2020年高二化学春季班学案

目录

第一讲	氢代烃和醇2
第二讲 乙	乙醛 醛类6
第三讲 乙	乙酸 羧酸9
第四讲 乙	乙酸乙酯
第五讲 有	有机专题——同分异构体、同系物、重要的有机反应16
第六讲 有	有机专题 有机合成 (一)21
第七讲 有	有机合成 (二)
第九讲 物	勿质的分离与检验30
第十讲	定量实验38
第十一讲	原子结构44
第十二讲	化学键 晶体50
第十三讲	元素周期律元素周期表55
第十四讲	化学反应速率和化学平衡59
第十六讲	氧化还原65
第十七讲	综合复习一(有机)72
第十八讲	综合复习二 (无机)78

第一讲 卤代烃和醇

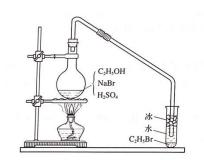
【基础知识整理】:

卤代烃复习

一、溴乙烷的物理性质:色,易挥发,密度水液体。
二、溴乙烷的化学性质:
1、反应,反应的条件为。
(1) 溴乙烷制备乙醇的反应方程式:
$ \begin{array}{ccc} CI & \longrightarrow & OH \\ (2) & CH_3-CH-CH_3 & CH_3-CH-CH_3 \\ \end{array} $
(3)应用:写出实验室检验 C ₂ H ₅ Br 中溴原子的过程:
2、反应,反应的条件为。
(1) 溴乙烷制备乙烯的反应方程式:
(2)写出两种不能发生消去反应卤代烃的结构简式:、、、
三、卤代烃的命名:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
四、卤代烃的化学性质: 烃与烃的衍生物的"桥梁"作用
官能团种类变化:由乙烯制备乙炔(两步):
官能团数目变化: (1)由乙醇制备乙二醇(三步)
; ;
o
(2) 二卤代物消去生成二烯烃:由 2—丁烯制备 1,3—丁二烯(两步):
; °

醇复习及补充

(1) 燃烧:


田文 7 人 1 九
一、一元醇
1. 知道什么是醇? 醇的官能团名称? 醇的分类有哪几种? 什么是饱和一元醇?
饱和一元醇的通式是。
2. 醇的系统命名的基本步骤。
用系统命名法,命名下列有机物:
$_{\mathrm{CH}_{3}}^{\mathrm{OH}}$
$CH_3 - \stackrel{\longleftarrow}{C} - CH - CH_3$ $CH_3 \stackrel{\longleftarrow}{O} + CH_3 \stackrel{\longleftarrow}{O} + CH_3 \stackrel{\longleftarrow}{C} + CH_3 $
(1) $CH_3 OH$ (2) $CH_2 CH_3$
二、乙醇的性质与制备
* 分子结构特点 。理解醇分子里的羟基比较活泼,它决定着醇的重要性质。
物理性质:
初连任灰:
化学性质
1. 与活泼金属 Na 反应
高二教材 P51: 乙醇与钠反应实验,观察、比较、解释乙醇与钠、水跟钠反应的实验现
象。
钠的物理性质:
实验现象:
反应原理:
巩固: 1mol 乙醇和足量金属 Na 反应,可生成 H2mol, 1mol 乙二醇和足量金属 Na 反
应,可生成 H ₂ 、
mol。
2. 氧化反应

现象及用途:

(2)	虚化复化 有一新材 DEA 7 前的虚化复化完心	建	
	写出反应中铜丝变黑、变红过程的化学方程式:	PART I	
	催化剂:。 Zēfine Keth	成乙醛	
	总反应的化学方程式:	o	
思考:	1. 醇催化氧化可以得到哪些类型的物质?		
	2. 醇氧化得到的生成物与醇分子的结构有怎样的关系?		
	3. 是否存在不能发生催化氧化的醇? 举例 并从分子结构分析说明。		
结论 :	· 醇催化氧化规律: 醇的氧化产物是由羟基所连接的 C 原子所决定的,的碳原子上有两个氢原子,此醇可以被氧化为;如果原子上由一个氢原子,此醇被氧化为,如果羟基所连的子,此醇。	羟基所连的碳	
巩固:	乙二醇催化氧化反应的化学方程式:		
(3)	被强氧化剂(酸性 KMnO ₄ 、K ₂ Cr ₂ O ₇)氧化,说明乙醇具有性 实验:乙醇中加入酸性高锰酸钾溶液,振荡,现象:。	· ,	
拓展: 程式:	· 高二教材 P54,用硫酸酸化的三氧化铬硅胶判断驾驶员是否酒后驾车。 为:	反应的化学方	
		(M) M (1) - 1000 Total (1) - 107 - 11	
3. 取	2代反应		
(1)	乙醇 140℃分子间脱水:		
(2)	乙醇与氢卤酸(HX)反应。	制取乙烯的装置	3

重要实验:实验室制取 C2H5Br

问题 1:	硫酸	(1:1)	的原因	(3条)	
					,
					_ <

问题 2: 小试管里放冰水的原因

写出实验室制取 C2H5Br 的化学方程式:

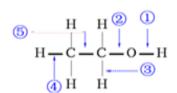
问题 3: 不纯的溴乙烷的外观怎样?含有什么杂质?形成杂质的化学原因是什么?如何除杂?除杂的化学原理?

*问题 4: 比较溴苯、溴乙烷除杂原理的异同点。从中你可以得到怎样的结论。

(3) 酯化反应: 高二教材 P59 乙酸乙酯的制取实验,具体在乙酸学案中展开。要求: 书写乙醇与乙酸反应的化学方程式,分析此反应发生的断键方式。

4. 消除反应

*醇消去反应结构上的条件是:


书写 1-丙醇、2-丙醇、1,2-丙二醇消除反应的化学方程式

归纳: 通过醇的消除反应可以得到哪些不同类别的有机物?

***反馈**:写出几种不能发生消除反应的醇的分子结构,并与不能发生催化氧化反应的醇的分子结构比较。

三、巩固提高

乙醇发生反应断键位置总结

反应	断键位置
与金属钠反应	
Cu 或 Ag 催化氧化	
浓硫酸加热到 170℃	
浓硫酸加热到 140℃	
浓硫酸条件下与乙酸加热	
与 HX 加热反应	

第二讲 乙醛 醛类

【基础知识整理】:

一、醛

- 1. 醛的概念: 由烃基与____基相连构成的化合物。
- 2. 饱和一元醛的通式 ______

思考与讨论: 甲醛、乙醛、丙醛组成的混合物,氢元素质量分数为 9%,则氧元素质量分数 是多少?

二、乙醛

1. 组成与结构

乙醛的分子式 结构式 结构简式 官能团 。

- 2. 物理性质
 - (1) 状态: 乙醛是 色、具有 气味的液体

 - (3) 乙醛易挥发
 - (4) 沸点为_____ ℃。
 - (5) 溶解性: 能溶于水, 与乙醚、乙醇、氯仿等有机溶剂互溶。
- 3. 化学性质

醛基很活泼,醛基性质分析:

(1) 氧化反应

①被____(填"强"或"若")氧化剂氧化

a. 银镜反应:

在洁净的试管里加入1mL2%的AgNO3溶液,然后一边振荡试管,一边逐滴滴入2%的稀

氨水,直到最初产生的沉淀恰好消失为止(所得到的溶液叫做银氨溶液)。再滴入3滴乙醛,振荡后把试管放在热水浴里温热。

实验现象	试管内壁上附着一层	_ 0

■ 氨水	- 乙醛	
AgNO ₃		水

化学方程式:	
--------	--

总结本实验注意事项:

巩固: 下列配制银氨溶液的操作是否正确? 如果出错,找出错误原因,改正。

- A. 在洁净的试管中加入 1~2 mL AgNO3 溶液,再加入过量浓氨水,振荡,混合均匀
- B. 在洁净的试管中加入 1~2 mL 稀氨水,再逐滴加入 2% AgNO3 溶液至过量
- C. 在洁净的试管中加入 1~2 mL AgNO3 溶液,再逐滴加入浓氨水至过量

D. 在洁	吉净的试管 中	加 2% AgNO ₃ 消	容液 1~2 mL,	逐滴加入 2	%稀氨水,边滴过	边振荡,至沉
淀恰好溶魚	解时为止。					
b. 与新制	的氢氧化铜	反应在试管里加	口入 10%的 Na	OH 的溶液	2mL,滴入 2%自	的 CuSO ₄ 溶
		入 0.5ml 乙醛溶 色沉		⊧腾,观察 顼	见象。	
实验结论	乙醛发生_	反应,	具有	性,氢氧	氧化铜发生	反应。
化学方程式	式:					o
	脸注意事项:					
②催化氧化	化:工业制名	备醋酸				
乙酉	整催化氧化力	方程式:				
③乙醛能值	吏酸性高锰 酮	後钾溶液、溴水	褪色			
		5O₂ <u>点燃</u> 4CO₂				
④燃烧 2	2CH ₋₃ CHO+5	$5O_2 \longrightarrow 4CO_2$	$_{2}+4H_{2}O$			
(2) 加成						
乙醛与氢气	气加成:			,具有	性,生成_	o
指导 1:						
在有机体	化学反应中,	常把有机物分	子中加上氢原	子或失去氧	原子的反应叫做	反
应,把失去	去氢原子或律	导到氧原子的反应	应叫做	反应。		
指导 2:						
(1) C = C	O 和 C=C 7	○同, C=O	(填"能"	或"不能")和.溴水、氢卤	酸发生加成。
(2) 羧基	和酯基中的	碳氧双键	(填"能	"或"不能	")发生加成反	<u>M</u> .
三、甲醛						
1. 甲醛的	结构					
分子式	4	结构式		育式	_。 一个甲醛分	子中含
个醛基	。1mol 甲醛	和银镜反应最多	多生成	mol Ag;与	氢氧化铜反应最	多生成
	_mol Cu ₂ O。					
2. 物理性	:质与用途					
甲醛又	.ជ੫,	色		_气味的	_体,沸点为	°C。能
溶于水,						
福尔马	林是质量分	数含	的甲醛水	溶液;	稀甲酯	荃溶液用于浸

3. 化学性质(写出化学方程式)	
(1)与氢气加成	,反应类型。
(2)银镜反应	,反应类型。
(3)与新制氢氧化铜反应	,反应类型。
巩固 1: 如何用一种试剂鉴别乙醇、乙酸和乙醛	溶液?
巩固 2: 区别乙醛、苯和溴苯,最简单的方法是巩固 3: 已知柠檬醛的结构简式为:	
$^{\text{CH}_3}_{\text{CH}_3}$ $^{\text{CH}_3}_{\text{CH}_3}$ $^{\text{CH}_3}_{\text{C}=\text{CH}-\text{CH}_2}$ $^{\text{CH}_3}_{\text{C}=\text{CH}-\text{CH}_0}$ $^{\text{CH}_3}_{\text{R}}$	据所学知识判断下列说法不正确的是()
A. 它可使酸性高锰酸钾溶液褪色	
C. 与乙醛互为同系物	D. 被催化加氢的最后产物是 $C_{10}H_{20}O$:
巩固 4: 乙二醛与新制氢氧化铜反应方程式	
四、酮(拓展)	o
1. 饱和一元酮通式与饱和一元醛相同,与饱和一	一元醛互为同分异构体。酮类官能团是酮基,

没有醛基,不能与银氨溶液,新制氢氧化铜反应,利用此性质可用于鉴别醛和酮。

种,给种子消毒。

第三讲 乙酸 羧酸

【基础知识整理】:

一、羧酸
1. 羧酸的结构
由与直接相连的化合物叫做羧酸,羧酸分子中的官能团(名称和结构式)。饱和一元羧酸的通式为。
回忆之前学习的烃的衍生物,羧酸可以从哪些角度进行分类?举例说明,写出典型代表物的结构简式。
思考: 分子式为 C ₅ H ₁₀ O ₂ 并能与饱和 NaHCO ₃ 溶液反应放出气体的有机物有几种(不含立体异构)? 写出它们的结构简式并命名。
O② ① 2. 羧酸的结构分析: 一元羧酸结构简式可以表示为 R—C+O+H ①键断裂,羧酸电离出,因而羧酸具有性。 ②键断裂,一COOH 中被取代,例如发生酯化反应时,羧酸脱去而生成相应的和水。
二、乙酸
1. 乙酸的组成与结构
乙酸的分子式为,结构式为,结构简式为,官能
团是。
2. 物理性质(高二教材 P58)
乙酸俗名,沸点,熔点,常温下是一种无色液体,具有气味,易溶于。日常生活中作为调味品的食醋含有
的乙酸。
3. 乙酸的化学性质
(1) 酸性
乙酸溶解在水中电离出 \mathbf{H}^+ ,电离方程式为,其酸性比碳酸
°
思考 1: 乙酸的酸性表现在哪些方面? 高二化学 P60, 写出化学方程式。

思考 2: 设计实验比较乙醇、醋酸、水的中氢原子的活泼性。

(2) 酯化反应(取代反应) 高二教材 P59

知道: 什么是酯化反应? 酯化反应的实质是什么? 如何证明酯化反应的断键方式?

实验: 在一试管中加 3 mL 乙醇和 2 mL 冰醋酸, 然后边摇动试管边慢慢加入 2 mL 浓硫酸,再加入少量沸石,按图所示连接好装置。用酒精灯小心均匀地加热 试管 10min,产生的蒸气经导管通到饱和碳酸钠溶液的液面上。 (1) 实验现象 ______。 (2) 化学方程式为 (3) 浓 H₂SO₄ 的作用 (4) 导气管末端能否浸入饱和 Na₂CO₃ 溶液中? 什么理由。 (5) 乙酸乙酯中有哪些杂质?如何除杂? (5) 小试管中放入什么溶液? 此溶液有何作用? (6) 长导管作用 巩固 1: 有乙酸乙酯、乙酸和乙醇的混合物,现采取适当步骤回收乙酸乙酯、乙酸和乙醇。 画出设计流程,写出各步骤所用的试剂、方法和有关物质的化学式。 巩固 2: 以乙酸, 乙醇, 乙二酸, 乙二醇作为反应物, 书写酯化反应化学方程式。 (1)一元醇和一元羧酸: (2) 二元羧酸和一元醇: (3) 一元羧酸和二元醇: (4) 二元羧酸和二元醇:

生成三元环:			0
生成六元环:			0
三、甲酸和乙二酸			
1. 甲酸(HCOOH _{)俗称}	_酸,它是	色、有	气味的液体,有
性,能跟水、乙醇混溶。甲	酸分子中既有	基又有	_基,能表现出
和的性质。			
(1) 具有— COOH 的性质:			
HCOOH + CH₃OH	-		
$HCOOH + Cu(OH)_2 \longrightarrow$			
(2) 具有—CHO 的性质。			
HCOOH+2 Cu(OH) ₂	-		
高三教材 P176,甲酸中工公			°
СООН			
2. 乙二酸 (COOH) 俗称	酸,最简单二元酮	睃, 通常含两分子	结晶水。能溶于水或乙醇
做 还原剂 。			
*四、高级脂肪酸			
活动:了解:什么是高级	脂肪酸、高级脂	肪酸的分类和代表	麦物 。
如:常见的高级脂肪酸 🗸			
(写出结构简式)			
应用:下列各组有机物是否互为	为同系物?判断并	并说明理由。	
A. 甲酸与油酸		B. 软脂酸和尿	万烯酸

(5) α—羟基丙酸(以乳酸为例): CH₃CH(OH)COOH

D. 甲酸与硬脂酸

C. 硬脂酸和油酸

第四讲 乙酸乙酯 酯类

【基础知识整理】:

一、乙酸乙酯的物理性质
乙酸乙酯是无色透明,具有果香味的油状液体,密度比水小,难溶于水,易溶于乙醇等有材
溶剂。
二、乙酸乙酯的化学性质
酯在酸或碱存在的条件下, 酯能发生水解反应, 生成相应的酸(或盐)和醇
(1) 乙酸乙酯在酸性条件下水解:
(2) 乙酸乙酯在碱性条件下水解:
三、酯的结构: RCOOR'、或 HCOOR'
官能团名称 符号
1、饱和一元羧酸和饱和一元醇生成的酯的分子式通式:
酯与碳原子数目相同的
2、酯的命名:根据生成酯的酸和醇,称为某酸某酯
命名: HCOOC ₂ H ₅ CH ₃ OOCCH ₂ CH ₃
写出下列酯的结构简式:
苯甲酸甲酯 乙二酸二乙酯
3、写出分子组成符合 C ₄ H ₈ O ₂ 的酯的结构简式并命名
4、酯的物理性质和用途
酯一般比水轻,难溶于水,易溶于乙醇和乙醚等有机溶剂。低级酯是具有芳香气味的液体
酯可用作溶剂,也可用作制备饮料和糖果的香料等。
5、酯的化学性质
(1) 苯甲酸乙酯在酸性条件下水解:

四、油脂
1、油脂是由多种高级脂肪酸(如硬脂酸、软脂酸、油酸等)和甘油生成的甘油酯。
脂肪和油统称油脂。
油是液态,如植物油,以不饱和高级脂肪酸甘油酯为主。
脂肪是固态,如动物脂肪,以饱和高级脂肪酸甘油酯为主。
例: 硬脂酸甘油酯 油酸甘油酯
2、油脂的化学性质
(1)油脂的氢化(油脂的硬化) 反应类型
油酸甘油酯和氢气反应
(2)油脂的水解 反应类型
① 油酸甘油酯在酸性条件下水解:
②硬脂酸甘油酯在碱性条件下水解: 基础题:
一、选择题(每小题只有一个正确选项)
1、下列反应中一般不需要使用催化剂的是()
A、乙烯与溴水 B、乙醇和乙酸 C、乙醇催化氧化 D、油脂的硬化
2、下列物质中,既能发生水解反应又能发生氢化反应的是()
A、油酸甘油酯 B、软脂酸甘油酯 C、油酸 D、乙酸乙酯
3. 下列各组物质,最简式相同,但既不是同系物,又不是同分异构体的是()
A、丙烯、环丙烷; B、乙酸、甲酸甲酯;
C 、 CH_3 — C_6H_4 — OH 与 C_6H_5 — CH_2 — OH ; D 、甲醛、甲酸甲酯
4、下列说法正确的是()
A、乙醇与浓硫酸加热到 140℃时可发生消去反应
B、甲苯、丙烯酸、丙醛、裂化汽油都可使酸性高锰酸钾溶液褪色
C 、烃或烃的衍生物在氧气中燃烧后的产物一定只有 CO_2 和 H_2O
D、凡是能起银镜反应的物质一定是醛
5、下列说法中,正确的是()
A.酯类水解的产物一定是醇和羧酸
B.能发生水解反应且生成物中有醇的有机物一定是酯

- C.油脂兼有酯和烯烃的一些化学性质 D.硝化甘油就其分子结构看属于酯类
- 6、某有机物有如下性质: ①能和银氨溶液共热得到银镜: ②加入碳酸氢钠无变化: ③与含 酚酞的氢氧化钠溶液共热,发现红色褪去.则该有机物可能是(
- B. 乙醛
 - C. 乙酸
- D. 甲酸乙酯
- 7、某有机物中可能有甲酸、乙酸、甲醇和甲酸乙酯四种物质中的一种或几种,在鉴定时有 下列现象: ①有银镜反应: ②加入新制的氢氧化铜悬浊液, 浊液不变清澈: ③与含酚酞的 NaOH 溶液共热时,发现红色变浅。则下列结论中正确的是()

 - A.四种物质均有 B.有甲酸乙酯和甲醇
 - C.有甲酸乙酯和甲酸 D.有甲酸乙酯,可能有甲醇
- 8、分子式为 C_3H_8O 的醇与 $C_4H_8O_2$ 的羧酸浓 H_2SO_4 存在时共热生成的酯有(
- B. 4种
- C. 5种
- D. 6种
- 9、羧酸 A (分子式为 C₅H₁₀O₂)可由醇 B 氧化得到, A 和 B 可生成酯,符合这种条件的酯有
 - A. 1 B.2 C.3
- D.4
- C_2H_5 O 10、PHB 塑料是一种可在微生物作用下降解的环保型塑料,其结构简式为: +O-CH-C+。

下面有关 PHB 说法不正确的是 ()

A.PHB 是一种聚酯

B.PHB 的单体是 CH₃CH₂CH(OH)COOH

C.PHB 的降解产物可能有 CO₂ 和 H₂O D. PHB 通过加聚反应制得

提高题:

完成下列化学方程式

1. 一元羧酸和一元醇生成链状小分子酯的酯化反应,如:

- 2. 二元羧酸(或醇)和一元醇(或酸)的酯化反应
- 二元羧酸和一元醇按物质的量1:1反应

二元羧酸和一元醇按物质的量 1:2 反应

- 3. 二元羧酸和二元醇的酯化反应
 - (1) 生成小分子链状酯, 如:

(2) 生成环状酯

(3) 生成聚酯, 如:

缩聚反应: 有机小分子单体间反应生成高分子化合物,同时生成小分子化合物的反应叫缩合聚合反应,简称缩聚反应。

练习:对苯二甲酸和乙二醇缩聚

拓展题

羟基酸的酯化反应

(1) 分子间反应生成小分子链状酯,如:

$$2 CH_3$$
-CH-COOH $\xrightarrow{$ 浓硫酸 \rightarrow OH

(2) 分子间反应生成环状酯,如:

$$_{2\text{ CH}_{3}}$$
—CH—COOH $\xrightarrow{$ 浓硫酸 \rightarrow OH

(3) 分子内反应生成环状酯,如:

(4) 羟基酸缩聚

第五讲 有机专题——同分异构体、同系物、重要的有机反应

【基础知识整理】:

一、同分异构体:具有同分异构现象的化合物。

同分异构现象: 具有相同_______但具有不同______的现象。

知道: 书写戊烷 C₅H₁₂ 的同分异构体并命名。比较这些同分异构体的沸点。

思考: 1一丁烯(C4H8)的同分异构体

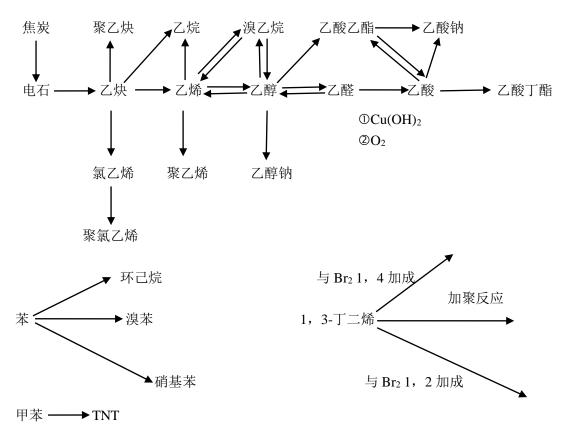
类型	碳链异构	位置异构	类别异构
结构简式			
CH ₂ =CHCH ₂ CH ₃			

总结: 书写同分异构的的基本思路。

二. "等效氢"问题

- (1) 同一碳原子上连接的氢原子为等效氢
- (2) 同一碳原子上连接的甲基中的氢原子为等效氢
- (3) 同一分子中处于对称位置上的碳原子上的氢是等效。氢

思考: 正戊烷、异戊烷、新戊烷的一氯取代物各有几种?


二、烃的同系物

问题: 互为同系物的化合物有何特点? 举例说明如何判断同系物。

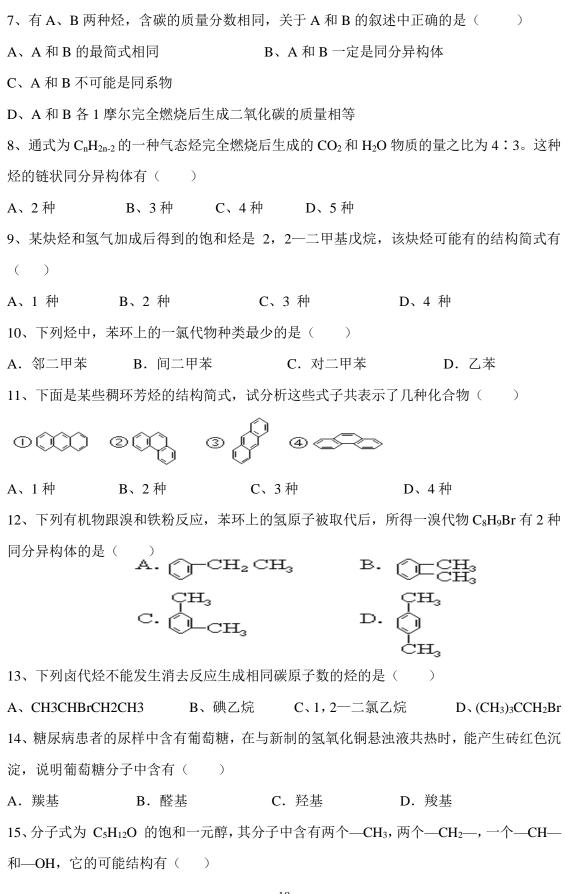
判断:下列说法是否正确?什么理由。

- ①化学性质相似的有机物是同系物
- ②分子组成相差一个或几个 CH2 原子团的有机物是同系物
- ③若烃中碳、氢元素的质量分数相同,它们必定是同系物
- ④互为同分异构体的两种有机物的物理性质有差别,但化学性质必定相似

三、重要有机反应 (书写下列反应方程式)

基础题

- 1、互称为同分异构体的物质不可能的是()
- A. 具有相同的分子量 B. 具有相同的结构


- C. 具有相同的通式 D. 具有相同的分子式
- 2. 某链烃的相对分子质量是72, 其同分异构体的数目是()
- A. 2
- B. 3

C. 4

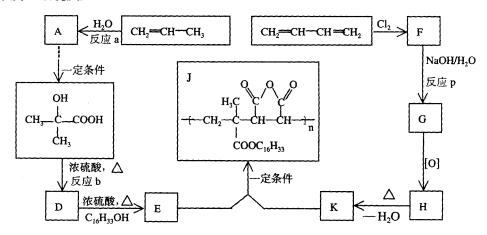
D. 5

- 3. 下列关于同系物的叙述中,不正确的是()
- A. 烷烃的同系物的分子式可用通式 C_nH_{2n+2}
- B. 互为同系物的有机物也互为同分异构体
- C. 两个同系物之间的相对分子质量差为 14 或 14 的整数倍
- D. 同系物间具有相似的化学性质
- 4. 下列烷烃的一氯代物只有一种的是()
- A. 2, 2-二甲基丙烷 B. 2-甲基丙烷 C. 2, 3-二甲基丁烷 D. 丙烷

- 5、分子式为 C₆H₁₄ 的链烃中,主链有四个碳原子的同分异构体有()
- A. 1 种 B. 2 种
- C. 3 种
- D. 4 种
- 6、进行一氯取代后,只能生成三种沸点不同的产物的烷烃是()

A. (CH₃)₂CHCH₂CH₂CH₃ B. (CH₃CH₂)₂CHCH₃

C. (CH₃)₂CHCH(CH₃)₂ D. (CH₃)₃CCH₂CH₃


A、2 种	B、3 种	C、4 种	D、5 种
16、1mol 分子约	且成为 C ₃ H ₈ O 的液态有	f机物 A,与足量的金属钠作用	月,可生成 11.2L 氢气(标
准状况),(1)则。	A 分子中必有一个	基,写出 A 可能的结构简	
(2) 若官能团	在碳链的一端,A 与浓	R硫酸共热,分子内脱去 1 分子	Z水生成 B。B 的结构简
式为。			
A 在有铜作催化	之剂时,与氧气一起加热	热,发生氧化反应,生成 C。C 的	 约结构简式为。
(3) 写出下列	指定反应的化学方程式	\ :	
①A→B			;
②A→C			;
17、对于下列有	「机物,回答问题:		
$\bigcirc CH_2 = CH_2$	$2C_2H_5OH$ 30	CH ₃ CH ₂ CHO 4CH ₂ =C(CH	[₃)CH=CH ₂
(1) 写出①中'	官能团的名称	,③中官能团的结构简式	o
(2) 能在一定	条件下起加聚反应的焊	. (填序号,下同)	,能发生消去反应的是
,能发	生银镜反应的是	,	
(3)写出③和新	f制氢氧化铜悬浊液反	应的方程式	
(4) 写出④发生	生加聚反应的方程式_		
提高题			
1. 丙烷的二氯/	代物有 4 种同分异构体	体,则其六氯代物的同分异构体	本数目是 ()
A. 2种	B. 4种	C. 6种 D. 3	种
2. 一氯代物的	司分异构体有2种,二	二氯代物的同分异构体有 4 种的	り烷烃是()
A. 乙烷	B. 丙烷 C	. 正丁烷 D. 新戊烷	3
3、进行一氯取	代后,只能生成四种涉	常点不同的产物的烷烃是 ()
A. (CH ₃) ₄ C	B. (CH ₃ CH ₂) ₂ CHCH ₂ O	CH ₃ C. (CH ₃) ₂ CHCH ₂ CH ₃	D. (CH ₃) ₃ CCH ₂ CH ₃
4、下列关于苯	乙烯(结构简式为	▶—CH=CH2)的叙述正确的是	륃 ()
A、不可以和溴	水反应 B.	、是苯的同系物	
C、分子中有 4	个碳碳双键 D	、 1 mol 苯乙烯可以和 4 mol H_2	发生加成反应
5、把质量为 m	g 的铜丝灼烧变成黑色	色,立即放入下列物质中,使银	同丝变成红色, 而且质量
仍为 mg 的是()		
A、稀 H ₂ SO ₄	B、C ₂ H ₅ OH	C、Ca(OH) ₂ 溶液	D、HCl
6、已知化学式为	为 C ₄ H ₁₀ O 的醇有 4 种	异构体, 若在该分子中增加 1	个羰基,形成的 C ₅ H ₁₀ O ₂

的羧酸可能有的结构有()	
A. 2 种 B. 4 种 C. 6 种 D. 5 种	
7、(CH ₃) ₂ CHCH ₂ OH 是某有机物加氢还原的产物,原有机物可能是()	
A. $(CH_3)_2CHCHO$ B. $CH_3(CH_2)_2CHO$	
C. CH \equiv C $-$ CH $_2$ CH $_2$ OH D. CH $_2$ C $-$ CH $_2$ OH CH $_3$	
8、某物质分子式为 $C_4H_8O_2$,不溶于水,密度比水小且有水果香味,其可能的组成()
A、2 种 B、3 种 C、4 种 D、5 种	
OH O	
A、酯化B、取代C、消去D、水解	
10. 橙花醛是一种香料,结构简式为: (CH ₃) ₂ C=CHCH ₂ CH ₂ C(CH ₃)=CHCHO。下列说法正确	角
的是()	
A. 橙花醛不可以与溴发生加成反应 B. 橙花醛可以发生银镜反应	
C. 1mol 橙花醛最多可以与 2mol 氢气发生加成反应 D. 橙花醛是乙烯的同系物	
11、某化合物的分子式为 $C_5H_{11}C1$, 分析数据表明分子中有两个 $-CH_3$, 两个 $-CH_2-$,	
一个一CH一及一个一Cl,它的可能结构只有四种,请写出这四种可能的结构式	
(1)(2)	
(3)(4)	_
12、从理论上分析,碳原子数不大于 10 的烷烃分子中,其一氯代物只有一种的烷烃共和	勻
种,它们的结构简式分别是 CH ₄ 、。	
13、碳氢化合物又称为烃,烃分为脂肪烃和芳香烃两大类。完成下列填空:	
(1) 某烃分子式为 C ₆ H ₁₄ , 有一个甲基支链, 一氯代物有 5 种, 其结构简式	勺
(2) 苯是	
(3)乙炔三聚可得到苯或二乙烯基乙炔(CH_2 = $CH-C$ = $C-CH$ = CH_2)。	
鉴别苯和二乙烯基乙炔可用的试剂。	
将上述试剂加入苯中,能观察到的现象有。	
(4) 乙炔与氯化氢反应可制得氯乙烯,其反应类型为。	
用氯乙烯为原料可以制取聚氯乙烯塑料。聚氯乙烯的结构简式为	. 0

第六讲 有机专题 有机合成(一)

题型 1: 根据反应物官能团的进行推导

【例 1】为扩大现有资源的使用效率,在一些油品中加入降凝剂 J,以降低其凝固点,扩大燃料油品的使用范围。J是一种高分子聚合物,它的合成路线可以设计如下,其中 A 的氧化产物不发生银镜反应:

试写出:

- (1) 反应类型; a_____、b____、P____ (2) 结构简式; F_____、H____

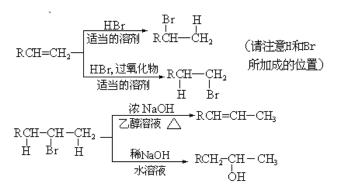
【解析】根据产物 J 的结构特点,采用逆推的方法得到 $K \times H \times G \times F$ 中含有碳碳双键,所以 $F \to 1$, 4 加成产物。

【规律总结】

- (1) 合成原则: 原料价廉,原理正确,途径简便,便于操作,条件适宜,易于分离。
- (2) 思路:将原料与产物的结构进行对比,一比碳干的变化,二比官能团的差异。
- ①根据合成过程的反应类型,所带官能团性质及题干中所给的有关知识和信息,审题分析,理顺基本途径。
- ②根据所给原料,反应规律,官能团引入、转换等特点找出突破点。③综合分析,寻找并设计最佳方案。
- (3)方法指导: 找解题的"突破口"的一般方法是:
- a.找已知条件最多的地方,信息量最大的;
- b.寻找最特殊的——特殊物质、特殊的反应条件、特殊颜色等等;
- c.特殊的分子式,这种分子式只能有一种结构;
- d.如果不能直接推断某物质,可以假设几种可能,认真小心去论证,看是否完全符合题意。
- (4) 应具备的基本知识:
 - ①官能团的引入:

引入卤原子(烯、炔的加成,烷、苯及其同系物,醇的取代等);**引入双键**(醇、卤代烃的消去,炔的不完全加成等);**引入羟基**(烯加水,醛、酮加 H_2 ,醛的氧化,酯水解,卤代烃水解,糖分解为乙醇和 CO_2 等);**生成醛、酮**(烯的催化氧化,醇的催化氧化等)

②碳链的改变:


增长碳链(酯化、炔、烯加 HCN,聚合,肽键的生成等);

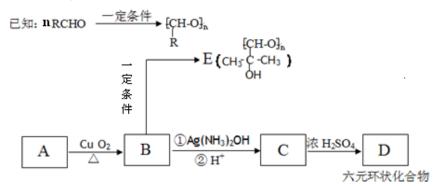
减少碳链 (酯水解、裂化、裂解、脱羧,烯催化氧化,肽键水解等)

③成环反应(不饱和烃小分子加成——三分子乙炔生成苯;酯化、分子间脱水,缩合、聚合等)

题型 2: 有机合成

【**例** 2】在有机反应中,反应物相同而条件不同,可得到不同的主产物.下式中 R 代表烃基, 副产物均已略去.

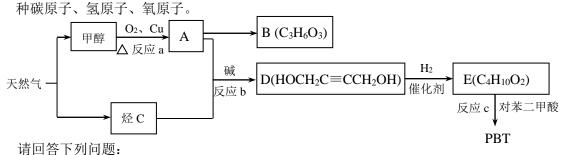
请写出实现下列转变的各步反应的化学方程式,特别注意要写明反应条件.

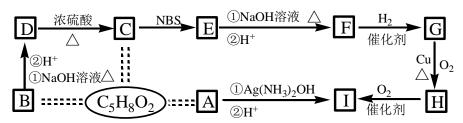

- (1) 由CH₃CH₂CH₂CH₂Br分两步转变为CH₃CH₂CHBrCH₃
- (2)由(CH₃)₂CHCH=CH₂分两步转变为(CH₃)₂CHCH₂CH₂OH

【解析】

- (1) 比较反应物和最终产物,官能团的位置发生了变化,充分利用题给信息,先消去,后加成。
- (1) 比较反应物和最终产物,官能团的位置发生了变化,充分利用题给信息,先加成,后水解。

基础题


1、有分子式为 $C_4H_{10}O_2$ 的一种同分异构体 A 有如下转化关系。

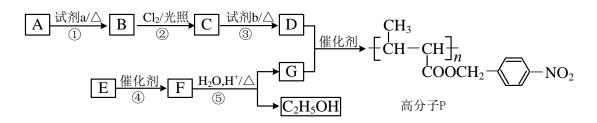

填写下列空白:

- (1) A 的结构简式为 ; B 中的官能团名称是 ;
- (2) D 的化学式为______
- (3) 写出 B 与银氨溶液反应的化学方程式: ;
- (4) 写出 C→D 的化学方程式______

2、以天然气为原料经下列反应路线可得工程塑料 PBT。B 含有环状结构,且只有等同的一种理图器。 是图器。

- (1) 写出反应类型: 反应 a_____、反应 b____、反应 c____
- (2) 写出结构简式: C_____、B____、PBT_____
- (3) 甲醇→A 的化学方程式______[来源:学科网]
- (4) D的同分异构体 F 不能发生银镜反应,能使溴水褪色,能水解且产物的碳原子数不等,则 F 在 NaOH 溶液中发生水解反应的化学方程式为。
- 3、有机物 A、B、C 互为同分异构体,分子式为 $C_5H_8O_2$,有关的转化关系如图所示,已知:A 的碳链无支链,且 1 mol A 能与 4 mol Ag(NH_3)OH 完全反应;B 为五元环酯。

提示: CH_3 --CH=-CH--R $\xrightarrow{\underline{\hat{q}}$ 代试剂(NBS)} CH_2 Br---CH=-CH---R

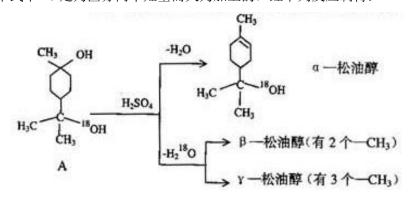

- (1)A 中所含官能团是。
- (2)B、H 结构简式为_____、___、____、____。
- (3)写出下列反应方程式(有机物用结构简式表示)

D→C

(4)F的加聚产物的结构简式为_____。

提高题

4、有机高分子 P 的合成路线如下:

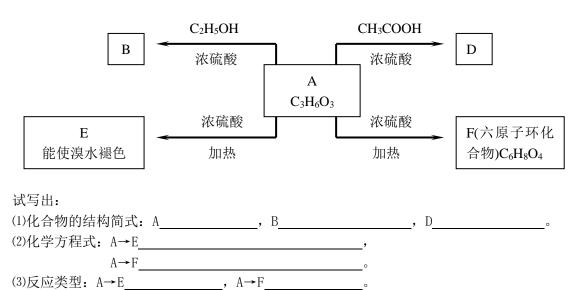

- (1). 试剂 A 是甲苯,写出 A 的结构简式_____
- (2). 反应③的化学方程式: _____。
- (3). 反应②的反应类型是_____,反应④的反应类型是____。
- (4). E 的分子式是 $C_6H_{10}O_2$ 。E 中含有的官能团名称为_____, G 的结构简式为_____。
- OH (5). 己知: 2CH₃CHO OH⁻→CH₃CHCH₂CHO。

以乙醛为起始原料,选用必要的无机试剂合成 E,写出合成路线

(合成路线常用的表示方式为: A 反应试剂 B 反应试剂 反应条件 ► 目标产物

拓展题

5、松油醇是一种调香香精,它是 α 、 β 、 γ 三种同分异构体组成的混合物,可由松节油分馏产品 A (下式中 α 是为区分两个羟基而人为加上的) 经下列反应制得:

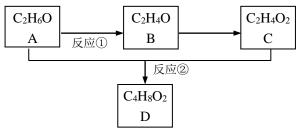

试回答:

- (1) α —松油醇的分子式
- (2) a —松油醇所属的有机物类别是 (多选扣分)
 - (a) 醇
- (b) 酚
- (c)饱和一元醇
- (3) α一松油醇能发生的反应类型是_____(多选扣分)
 - (a) 加成
- (b) 水解
- (c) 氧化

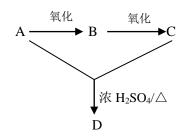
(4) 在许多香料中松油醇还有少量的以酯的形式出现, 写出 RCOOH 和 α 一松油醇反应的化

学方程式			0
(5) 写结简式:	β — 松油醇	•	γ —松油醇

6、化合物 A 最早发现于酸牛奶中,它是人体内糖代谢的中间体,可由马铃薯、玉米淀粉等发酵制得,A 的钙盐是人们喜爱的补钙剂之一。A 在某种催化剂的存在下进行氧化,其产物不能发生银镜反应。在浓硫酸存在下,A 可发生如下所示的反应。

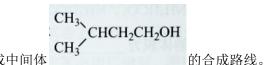


第七讲 有机合成(二)


基础题

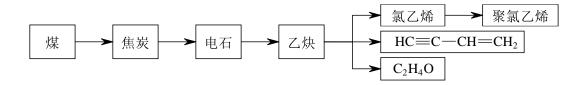
1、A 是酒的主要成分, D 为具有果香味的无色油状液体。由 A 到 D 的转化如下:

回答下列问题:


- (1) A 中的官能团为_____。C 的名称是____
- (2) 反应①的反应类型为____。反应②的反应条件为____。
- (3) 写出 B 的一种同系物的结构简式______
- (4) 写出检验 B 是否完全转化为 C 的方法_____。
- 2. A、B、C、D 均为烃的衍生物,它们之间的转化关系如下图所示:

A 俗称酒精; C 的分子式为 C₂H₄O₂。完成下列填空:

- (1) 写出由 A 转化为 B 的化学方程式。
- (2) 检验 B 的试剂为。
- (3) C中的官能团是。
- (4) D 的结构简式为 ; D 与 CH₃CH₂COOH 互为 。
- 3、异戊二烯是重要的有机化工原料,其结构简式为CH₂=C(CH₃)CH=CH₂。完成下列填空:
- (1) 化合物 X 与异戊二烯具有相同的分子式,与 Br/CCl_4 反应后得到 3-甲基-1,1,2,2-四溴丁烷。 X 的结构简式为
- (2) 异戊二烯的一种制备方法如下图所示:

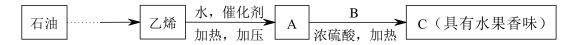

A 能发生的反应有_____。(填反应类型)B 的结构简式为_____。

(3)设计一条由异戊二烯制得有机合成中间体

(合成路线常用的表示方式为: A 反应试剂 反应条件 B 反应试剂 反应条件 目标产物

4、煤和石油不仅是重要的矿物能源,更可以通过综合利用得到多种有机化工产品。 煤干馏后可得到焦炭、煤焦油、粗氨水和焦炉气等。焦炭可通过以下途径制取聚氯乙烯等化工产品。

完成下列填空:


- (1)氯乙烯转化为聚氯乙烯的化学方程式
- (2) HC≡C−CH=CH₂ 与正四面体烷 的关系是_____(选填"同系物""同分异构体")。

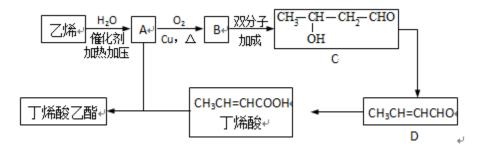
若分别完全燃烧等质量的 HC=C-CH=CH₂ 和乙炔,所需氧气的量_____ (选填"前者多""后者多""一样多")。

(3) 检验 C₂H₄O 中是否含有醛基的实验方法

是_____。

乙烯是石油化工最重要的基础原料,下图是工业合成物质 C 的流程:

完成下列填空:


- (4) A 与浓硫酸在共热条件下制取乙烯的反应类型是。
- (5) B 的分子式为 $C_2H_4O_2$,与纯碱反应能生成二氧化碳气体,写出 A+B→C 的化学方程式

27

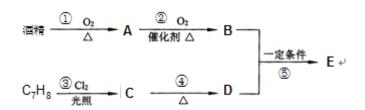
(合成路线常用的表示方式为:
$$A = \frac{\overline{\text{反应试剂}}}{\overline{\text{反应条件}}} B \dots = \frac{\overline{\text{反应试剂}}}{\overline{\text{反应条件}}} = \text{目标产物}$$

提高题

1、乙烯是重要的有机化工初始原料,可以由它出发合成很多有机产品,油漆软化剂丁烯酸乙酯的合成途径如下:

完成下列填空:

- (2). C→D 的反应类型是。


A→B 的化学方程式为

- (3). 写出一种 D 的同分异构体(与 D 含有完全相同的官能团)。
- (4). 请设计实验,检验 D 是否完全氧化为丁烯酸。______
- (5). 设计一条由 C 制备 CICH₂CH=CHCH₂Cl 的合成路线。

(合成路线常用的表示方式为:
$$A = \frac{\overline{\text{反应试剂}}}{\overline{\text{反应条件}}} B \dots = \frac{\overline{\text{反应试剂}}}{\overline{\text{反应条件}}} = \text{目标产物}$$
)

拓展题

2、茉莉花香气的成分有多种,有机物 $E(C_9H_{10}O_2)$ 是其中的一种,它可以从茉莉花中提取,也可以用酒精和苯的某一同系物(C_7H_8)为原料进行人工合成,合成路线如下:

己知: D与酒精具有相同的含氧官能团,E为酯。

完成下列填空:

(1). 下列物质中官能团的名称是: B, C。
(2). ③的有机反应类型是:
分别是: 反应①。
(3). 反应⑤的化学方程式为:
(4). E 的同分异构体中,苯环上只有一个取代基,并包含一个酯基的结构有多个,下面
是其中 2 个的结构简式: 请再写出 2 个符合上述要求的 E 的同分异构体结构简式: 和
(5). 请写出以 CH ₂ =CHCH ₂ CH ₃ 为唯一有机原料制备 CH ₂ CH = CHCH ₂ 的合成路线(无 Br Br
机试剂
任用)。
(合成路线常用的表示方式为: A 反应试剂 → B ······ 反应试剂 → 目标产物)

第九讲 物质的分离与检验

【基础知识整理】:

物质的分离和提纯

(1) 物质分离和提纯的区别:

分离的对象中不分主体物质和杂质,其目的是得到混合物中各种纯净的物质(保持原来的化学成分和物理状态);提纯的对象分主体物质和杂质,其目的是净化主体物质,不必考虑提纯后杂质的化学成分和物理状态。

(2) 物质分离和提纯的基本原则:

①不增(不引入新杂质);②不减(不减少被提纯物);③易分离(被提纯物与杂质易分解);④易复原(被提纯物易复原)。

(3) 物质分离和提纯的注意事项:

①除杂试剂需过量;②过量试剂需除尽,去除多种杂质时要考虑加入试剂的顺序;③选择最佳的除杂途径。

(4) 物质分离、提纯的物理方法: ①过滤: 是除去溶液里混有不溶于溶剂的杂质的方法。 a.所用仪器: b.注意事项: ____; b ____ _____; c. ______; ③蒸发: 是将溶液浓缩,溶剂汽化,使溶质以晶体形式析出的过程。 a.所用仪器: b.注意事项(1)液体的体积不超过蒸发皿容积的2/3;(2)在加热过程中要不断搅动液体以防 局过热导致液滴飞溅出来 (3)当加热到蒸发皿中出现较多固体时,就应停止加热,利用余热蒸干。 **④蒸馏**: 是分离或提纯沸点不同的液体混合物的方法。 所用仪器: ⑤结晶和重结晶: a.冷却法:将热的饱和溶液慢慢冷却后析出晶体,此法适合于溶解度随温度变化较大的溶质, 如 KNO3。

c.重结晶: 将已得到的晶体用蒸馏水溶解,经过滤、加热、蒸发、冷却等步骤,再次析出晶

b.蒸发法: 此法适合于溶解度随温度变化不大的溶质,如 NaCl。

a.所用仪器: ______

体,得到更纯净的晶体的过程。

⑥萃取与分液:

b.萃取:利用溶质在 ________的不同,用一种溶剂把溶质从它与另一溶剂组成的溶液中提取出来,前者(溶剂)称为萃取剂,一般溶质应在萃取剂里的溶解度更大些。

c.分液: 利用互不相溶的液体密度的不同,用分液漏斗将它们一一分离出来

⑦升华: 分离固体混合物中的某组分受热时易升华。如分离 KI 和 I_2 。

⑧渗析法: 如从皂化液中分离肥皂、甘油等

物质的检验

鉴定、鉴别和推断:

(1) 相同点:

物质的检验在中学通常有鉴定、鉴别和推断三类。它们的共同点是均需根据物质的特征 反应,选择恰当的试剂和方法,准确观察反应中颜色的改变、沉淀的生成和溶解、生成气体 的气味、焰色等现象加以判定,必要时写出离子方程式或化学方程式。

(2)不同点:

- ①鉴定:通常是指对于一种物质的定性检验。鉴定是根据物质的化学特性,分别检出阳离子、阴离子。
- ②鉴别:通常是指对两种或两种以上的物质进行定性辨认,可根据一种物质的特性区别于另种,也可根据几种物质的气味、溶解性、溶解时的热效应等性质的不同加以区别。
- ③推断: 是通过已知实验事实,根据性质分析推理出被检验物质的组成或名称。

气体的检验方法

(1) 氢气: 纯净的氫气在空气中燃烧
水,不是只有 H_2 才产生爆鸣声;可点燃的气体不一定是氢气。
(2)氧气:可使复燃。
(3) 氯气: 黄绿色, 能使变蓝(O_3 、 NO_2 也能使湿润的碘化钾淀粉试纸变蓝)
(4)氯化氢: 无色气味的气体,在潮湿的空气中形成白雾,能使湿润的蓝色石蕊设
纸变红;用蘸有浓氨水的玻璃棒靠近时冒白烟;将气体通入 AgNO3 溶液时有生成
(5) 二氧化硫: 无色有刺激性气味的气体。能使
使
(6) 硫化氢: 无色有臭鸡蛋气味的气体。能使
或使湿润的醋酸铅试纸变黑。
(7)氨气: 无色有刺激性气味,能使
棒靠近时能生成白烟。
(8)二氧化氮:气体,通入水中生成无色的溶液并产生无色气体,水溶液显酸性
(9)一氧化氮:气体,在空气中立即变成红棕色。
(10)二氧化碳: 能使
清的石灰水变浑浊, N_2 等气体也能使燃着的木条熄灭。
(11)一氧化碳:可燃烧,火焰呈淡蓝色,燃烧后生成 CO2;能使灼热的 CuO 由黑色变成红色

(12)甲烷:	无色气体,可燃,淡蓝色火焰,生成水和 CO2;不能使	褪色。
(13)乙烯:	无色气体、可燃,燃烧时有,	生成水和 CO ₂ 。能
使	褪色。	
(14)乙炔:	无色无臭气体,可燃,燃烧时有,	生成水和 CO ₂ ,能
使		
	常见离子的检验	
离子	检验方法及现象	
H^+	①石蕊变, ②pH 试纸变, ③甲基橙变	
$\mathrm{NH_4}^+$	加	
Na ⁺	火焰焰色为	
K ⁺	火焰焰色为	
Mg ²⁺	加入 OH·有,过量碱不溶	
Ba ²⁺	加 SO ₄ ²⁻ 或 H ₂ SO ₄ 有, 加稀 HNO ₃ 沉淀不消失	
A1 ³⁺	加 OH- 有,加过量的强碱可生成	而溶解
Fe ²⁺	①加入 NaOH 溶液产生白色沉淀→→红褐色②加	入 KSCN 无颜色的变
	化,再滴加氯水变成色	
Fe ³⁺	①加入 NaOH 溶液有	色
Ag^+	加入 HCl 或 Cl 有, 再加稀 HNO3 白色沉淀不溶	消失
Cl-	加入 AgNO ₃ 有, 再加稀 HNO ₃ 沉淀不消失	
Br-	加入 AgNO3 有, 再加稀 HNO3 沉淀不消失	
I-	加入 AgNO3 有, 再加稀 HNO3 沉淀不消失	
OH-	能使石蕊变; 酚酞变; 甲基橙变	
S ²⁻	①遇 Pb ²⁺ 变 ②加非氧化性酸有气体放	(出
SO ₃ ²⁻	加强酸产生有	褪色
SO ₄ ²⁻	加 Ba ²⁺ 有, 加稀 HNO ₃ 沉淀不消失	
CO ₃ ² -	加入盐酸后生成使石灰水变浑浊的无色、无味气体	
NO ₃ -	浓缩后加入浓 H ₂ SO ₄ 和铜片,加热后有气体,溶液	变为
	有关有机物鉴别、推断的几点归纳:	
(1)能发生销	艮镜反应的:	等。
(2)能与溴7	K反应而使之褪色(变色)的: 不饱和烃(等)、不	下饱和烃的衍生物(烯
醇、烯酸、	烯酯、CH ₂ =CHCl、油酸及其盐、油酸某酯、油等)、苯酚(生成)、天
然橡胶等。		
(3)因萃取(使溴水褪色的 :比水重的有	经的有液态饱和烃、
苯及其同系	物、液态饱和酯等。	

(4)能使酸性 KMnO ₄ 溶	液褪色的:
的有机物等。	
(5)能与钠等活泼金属反	应生成 H₂ 的: 含基的液态有机物。
	重要有机物(官能团)的检验
名称	检验方法及现象
碳碳双键或三键	加
苯	将苯滴入浓 H ₂ SO ₄ 、浓 HNO ₃ 混酸中振荡,产生色、有、
	不溶于水的油状物。加入纯溴、Fe 粉反应剧烈,有白雾
甲苯	滴入
溴乙烷(卤代烃)	与 NaOH 溶液共热后,用 HNO3 酸化,滴加
	沉淀
乙醇(醇类)	加入金属钠,有产生,与乙酸、浓 H ₂ SO ₄ 共热,有、味
苯酚(酚类)	滴加浓溴水,有,滴加少量 FeCl₃溶液,溶液呈
乙醛(葡萄糖)	加银氨溶液,加热,产生银镜;加入新制 Cu(OH)2 悬浊液加热,
	有
乙酸(羧酸类)	使石蕊变红;加入 Na ₂ CO ₃ 溶液有; 与乙醇、浓 H ₂ SO ₄ 共
	热,有味
乙酸乙酯(酯类)	加入少量
淀粉	滴加碘水,呈
蛋白质	灼烧,有的气味; 加浓 HNO3 加热,呈(含苯环
	的蛋白质)
基础题	
1. 为检验海带灰浸出液	後中是否含有 I ⁻ ,可向溶液中加入 ()
A. 淀粉溶液	B. 盐酸
C. HNO ₃ 酸化的 AgNO	D. CCl ₄
2. 硫酸亚铁易被氧化剂	而变质。为检验某补血剂中硫酸亚铁是否变质,可向该补血剂配成的
溶液中加入 ()	
A. AgNO ₃ 溶液	B. 盐酸酸化的 BaCl ₂ 溶液
C. KSCN 溶液	D. HNO ₃ 酸化的 Ba(NO ₃) ₂ 溶液
3. 为检验某溶液中是否	F含有 Cl^- 、 $CO_3^{2^-}$ 、 Na^+ 、 NH_4^+ ,进行如下实验:取样,加入足量盐
酸,有气泡产生,再加	入 AgNO3 溶液,有白色沉淀生成; 另取样,加入足量 NaOH 溶液,
微热,产生的气体使湿	润的红色石蕊试纸变蓝。下列判断正确的是()
A. 一定不含 Cl¯	B. 一定不含 Na ⁺
C. 一定含有 Cl¯、CO ₃	D. 一定含有 CO ₃ ²⁻ 、NH ₄ ⁺

4、能用来区别 BaCl ₂ 、NaCl、Na ₂ CO ₃ 三种物质的试剂是()
A、AgNO ₃ B、稀硫酸 C、稀盐酸 D、稀硝酸
5、下列哪种试剂能区分 KCl、FeCl ₃ 、CuCl ₂ 、MgCl ₂ 、AlCl ₃ 这五瓶溶液 ()
A、HCl B、NaOH C、HNO ₃ D、KSCN
6、在允许加热的条件下,只用一种试剂就可以鉴别硫酸铵、氯化钾、氯化镁和硫酸铁溶液,
这种试剂是()
A. NaOH B. Na ₂ CO ₃ C. AgNO ₃ D. BaCl ₂
7、某无色混合气体含有 NH_3 、 HCl 、 SO_2 、 Cl_2 、 CO_2 、 O_2 中的几种。将气体先通过浓硫酸,
气体体积明显减小; 再通过品红溶液, 品红溶液褪色; 最后通过澄清石灰水, 石灰水变浑浊。
下列推断错误的是
A. 肯定存在 CO ₂ B. 可能存在 O ₂
C. 肯定不存在 HCl D. 肯定存在 NH ₃
8、某无色溶液中存在大量的 Ba^+ 、 NH_4^+ 、 Cl^- ,该溶液中还可能大量存在的离子是
A. Fe^{3+} B. CO_3^- C. Mg^{2+} D. OH^-
9、如果只限用一种试剂把 Na ₂ SO ₄ 、NaCl、(NH ₄) ₂ SO ₄ 、NH ₄ Cl 四种溶液区分开来,应选择
A. NaOH B. Ba(OH) ₂ C. AgNO ₃ D. BaCl ₂
A. NaOH B. Ba(OH) ₂ C. AgNO ₃ D. BaCl ₂ 10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是 A. CuCl ₂ 、KCl B. KCl、(NH ₄) ₂ SO ₄ C. CuCl ₂ 、NaOH D. CuCl ₂ 、(NH ₄) ₂ SO ₄
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是 A. CuCl ₂ 、KCl B. KCl、(NH ₄) ₂ SO ₄ C. CuCl ₂ 、NaOH D. CuCl ₂ 、(NH ₄) ₂ SO ₄ 11. 对于某些离子的检验及结论一定正确的是(
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是 A. CuCl ₂ 、KCl B. KCl、(NH ₄) ₂ SO ₄ C. CuCl ₂ 、NaOH D. CuCl ₂ 、(NH ₄) ₂ SO ₄ 11. 对于某些离子的检验及结论一定正确的是() A. 加入稀盐酸产生无色气体,将气体通入澄清石灰水中,溶液变浑浊,一定有 CO ₃ ²⁻
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是 A. CuCl ₂ 、KCl B. KCl、(NH ₄) ₂ SO ₄ C. CuCl ₂ 、NaOH D. CuCl ₂ 、(NH ₄) ₂ SO ₄ 11. 对于某些离子的检验及结论一定正确的是() A. 加入稀盐酸产生无色气体,将气体通入澄清石灰水中,溶液变浑浊,一定有 CO ₃ ²⁻ B. 加入氯化钡溶液有白色沉淀产生,再加盐酸,沉淀不消失,一定有 SO ₄ ²⁻
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是 A. CuCl ₂ 、KCl B. KCl、(NH ₄) ₂ SO ₄ C. CuCl ₂ 、NaOH D. CuCl ₂ 、(NH ₄) ₂ SO ₄ 11. 对于某些离子的检验及结论一定正确的是() A. 加入稀盐酸产生无色气体,将气体通入澄清石灰水中,溶液变浑浊,一定有 CO ₃ ²⁻ B. 加入氯化钡溶液有白色沉淀产生,再加盐酸,沉淀不消失,一定有 SO ₄ ²⁻ C. 加入氢氧化钠溶液并加热,产生的气体能使湿润红色石蕊试纸变蓝,一定有 NH ₄ +
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是 A. CuCl ₂ 、KCl B. KCl、(NH ₄) ₂ SO ₄ C. CuCl ₂ 、NaOH D. CuCl ₂ 、(NH ₄) ₂ SO ₄ 11. 对于某些离子的检验及结论一定正确的是() A. 加入稀盐酸产生无色气体,将气体通入澄清石灰水中,溶液变浑浊,一定有 CO ₃ ²⁻ B. 加入氯化钡溶液有白色沉淀产生,再加盐酸,沉淀不消失,一定有 SO ₄ ²⁻ C. 加入氢氧化钠溶液并加热,产生的气体能使湿润红色石蕊试纸变蓝,一定有 NH ₄ + D. 加入碳酸钠溶液产生白色沉淀,再加盐酸白色沉淀消失,一定有 Ba ²⁺
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是 A. CuCl ₂ 、KCl B. KCl、(NH ₄) ₂ SO ₄ C. CuCl ₂ 、NaOH D. CuCl ₂ 、(NH ₄) ₂ SO ₄ 11. 对于某些离子的检验及结论一定正确的是() A. 加入稀盐酸产生无色气体,将气体通入澄清石灰水中,溶液变浑浊,一定有 CO ₃ ²⁻ B. 加入氯化钡溶液有白色沉淀产生,再加盐酸,沉淀不消失,一定有 SO ₄ ²⁻ C. 加入氢氧化钠溶液并加热,产生的气体能使湿润红色石蕊试纸变蓝,一定有 NH ₄ +D. 加入碳酸钠溶液产生白色沉淀,再加盐酸白色沉淀消失,一定有 Ba ²⁺ 12. 离子检验的常用方法有三种:
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是 A. CuCl ₂ 、KCl B. KCl、(NH ₄) ₂ SO ₄ C. CuCl ₂ 、NaOH D. CuCl ₂ 、(NH ₄) ₂ SO ₄ 11. 对于某些离子的检验及结论一定正确的是() A. 加入稀盐酸产生无色气体,将气体通入澄清石灰水中,溶液变浑浊,一定有 CO ₃ ²⁻ B. 加入氯化钡溶液有白色沉淀产生,再加盐酸,沉淀不消失,一定有 SO ₄ ²⁻ C. 加入氢氧化钠溶液并加热,产生的气体能使湿润红色石蕊试纸变蓝,一定有 NH ₄ +D. 加入碳酸钠溶液产生白色沉淀,再加盐酸白色沉淀消失,一定有 Ba ²⁺ 12. 离子检验的常用方法有三种:
10. 某固体混合物可能含有 CuCl ₂ 、KCl、NaOH、(NH ₄) ₂ SO ₄ 中的两种,通过实验确定其组成:取少量固体溶于水,得到蓝色溶液;向该溶液中滴入硝酸钡溶液,有沉淀生成。固体混合物的组成是 A. CuCl ₂ 、KCl B. KCl、(NH ₄) ₂ SO ₄ C. CuCl ₂ 、NaOH D. CuCl ₂ 、(NH ₄) ₂ SO ₄ 11. 对于某些离子的检验及结论一定正确的是() A. 加入稀盐酸产生无色气体,将气体通入澄清石灰水中,溶液变浑浊,一定有 CO ₃ ²⁻ B. 加入氯化钡溶液有白色沉淀产生,再加盐酸,沉淀不消失,一定有 SO ₄ ²⁻ C. 加入氢氧化钠溶液并加热,产生的气体能使湿润红色石蕊试纸变蓝,一定有 NH ₄ +D. 加入碳酸钠溶液产生白色沉淀,再加盐酸白色沉淀消失,一定有 Ba ²⁺ 12. 离子检验的常用方法有三种: 检验方法 沉淀法 显色法 气体法 含义 反应中有沉淀产生或溶解 反应中有颜色变化 反应中有气体产生

13. 某溶液中可能含有 Na+、NH₄+、Ba²⁺、SO₄²⁻、I⁻、S²⁻。分别取样: ①用 pH 计测试,

溶液显弱酸性;②加氯水和淀粉无明显现象。为确定该溶液的组成,还需检验的离子是()

C. Ba^{2+}

D. NH₄⁺

B. $SO_4^{2^-}$

A. Na⁺

14. 某溶液中可能含有 Br^- 、 NH_4^+ 、 Cu^{2+} 、 SO_3^{2-} ,向该溶液中加入少量氯水,溶液仍呈	.无
色,则下列关于该溶液组成的判断正确的是()	
①肯定不含 Br ⁻ ; ②肯定不含 Cu ²⁺ ; ③肯定含有 SO ₃ ²⁻ ; ④可能含有 Br ⁻	
A, ①③ B, ①②③ C, ①② D, ②③④	
15. 某无色溶液含有 Na^+ 、 Fe^{3+} 、 Cl^- 、 SO_4^{2-} 中的 2 种离子,分别取该溶液进行了下列实验	½:
(1) 向溶液中滴加用硝酸酸化的 $AgNO_3$ 溶液,有白色沉淀产生; (2) 向溶液中滴加 $Ba(NC)$	3)2
溶液,没有任何现象。根据上述实验,可以确定溶液中一定存在的离子是	
A. Fe ³⁺ 和 Cl ⁻ B. Na ⁺ 和 SO ₄ ²⁻ C. Fe ³⁺ 和 SO ₄ ²⁻ D. Na ⁺ 和 Cl ⁻	
16. 可用分液漏斗分离的正确组合是()	
①乙醇和乙酸 ②葡萄糖溶液和蔗糖溶液 ③苯和食盐水 ④苯和三溴苯酚	
⑤乙酸乙酯和乙醇 ⑥乙酸乙酯和纯碱溶液	
A. ①④ B. ③⑤ C. ③⑥ D. ②⑥	
17. 物质的鉴别有多种方法。下列能达到鉴别目的的是: ①不用其它试剂,检验 FeCl3 溶	液
和 NaOH 溶液 ②用相互滴加的方法鉴别 HCl 和 NaHCO3 溶液 ③点燃鉴别戊烷和苯()
A. ①② B. ①8 C. ②③ D. ①③③	
18. 下列提纯有机物的操作正确的是()	
A. 乙醇(乙酸),加入新制的生石灰后蒸馏	
B. 甲苯(苯酚),加浓溴水后,过滤	
C. CH ₃ COOC ₂ H ₅ (CH ₃ CH ₂ OH) 加适量的 CH ₃ COOH 和浓 H ₂ SO ₄ 加热	
D. C_2H_6 (C_2H_4) 混入适量的 H_2 , 加催化剂镍后充分加热	
19. 现有三组实验: ① 除去混在植物油中的水 ② 回收碘的 CCl ₄ 溶液中的 CCl ₄ ③ 用	食
用酒精浸泡中草药提取其中的有效成份。分离以上各混合液的正确方法依次是(
A. 分液、萃取、蒸馏 B. 萃取、蒸馏、分液	
C. 分液、蒸馏、萃取 D. 蒸馏、萃取、分液	
20. 下列有机化合物中均含有酸性杂质,除去这些杂质的方法中正确的是()	
A. 苯中含苯酚杂质: 加入溴水, 过滤	
B. 乙醇中含乙酸杂质: 加入碳酸钠溶液洗涤,分液	
C. 乙醛中含乙酸杂质: 加入氢氧化钠溶液洗涤,分液	
D. 乙酸丁酯中含乙酸杂质: 加入碳酸钠溶液洗涤,分液	
提高题	
1. CuS 和 Cu ₂ S 都能溶于硝酸,它们高温灼烧的产物相同,以下鉴别 CuS 和 Cu ₂ S 两种黑	色
粉末的方法合理的是()	

A. 将两种样品分别溶于硝酸,区别所产生的气体

- B. 将两种样品分别溶于硝酸, 区别溶液的颜色
- C. 取两种同质量的样品分别在高温灼烧,区别残留固体的质量
- D. 取两种同质量的样品分别在高温灼烧,区别残留固体的颜色
- 2. 下列各组气体或溶液用括号内试剂加以鉴别,其中不合理的是()
- A. 二氧化碳、二氧化硫、一氧化碳(品红溶液) B. 氯化钠、硝酸银、碳酸钠(稀盐酸)
- C. 酒精、醋酸、醋酸钠(石蕊试液) D. 硫酸、硝酸钡、氯化钾(碳酸钠溶液)
- 3. 物质的鉴别有多种方法。①用水鉴别苯、乙醇、溴苯 ②用相互滴加的方法鉴别 Ca(OH)2

和 NaHCO₃和溶液 ③点燃鉴别甲烷和乙炔,下列能达到鉴别目的的是(

- A. 12 B. 13 C. 23 D. 123
- 4. 下列各组有机物只用一种试剂无法鉴别的是()
- A. 乙醇、甲苯、硝基苯 B. 苯、CCl₄、己烯 C. 苯、甲苯、己烷 D. 甲酸、乙醛、乙酸
- 5. 除去下列括号内杂质的试剂或方法错误的是()
- A. HNO3 溶液(H₂SO₄), 适量 BaCl₂溶液, 过滤
- B. CO₂(SO₂),酸性 KMnO₄溶液、浓硫酸,洗气
- C. KNO₃ 晶体(NaCl), 蒸馏水, 结晶 D. C₂H₅OH(CH₃COOH), 加足量 CaO, 蒸馏
- 6. 下列实验方案合理的是()
- A. 检验混合离子溶液中的 SO_4^{2-} : 加入 HCl 酸化的 $Ba(NO_3)_2$ 溶液,观察有无白色沉淀生成
- B. 除去 NO 中混有的少量 NO2: 将混合气体通入水中,再用排空气法收集 NO
- C. 配制浓度为 0.1 mol/L 的 NaOH 溶液: 将 0.05 mol NaOH 溶于 500 mL 水配成溶液
- D. 检验氯化铁溶液中是否混有 Cu²⁺: 纸上层析后用氨熏

拓展题

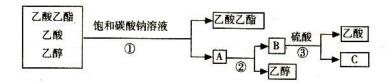
7、为了验证 Fe3+的性质,某化学兴趣小组设计了下图所示一组实验,其中实验方案设计错

误的是()

- A. 只有④
- B. 只有③
- C. ③和④均错
- D. 全部错误
- 8. 根据实验现象所作的的结论一定正确的是()
- B. 无色试液 $\xrightarrow{\text{id} \lambda = \text{id} \text{left}}$ 产生白色沉淀 结论: 试液中含有 $\text{Ca}(\text{OH})_2$
- C. 无色试液 $\xrightarrow{\text{finBtility}}$ 试液变红 结论: 试液显碱性
- D. 无色试液 $\xrightarrow{\text{m\lambda} \cap \text{m\lambda} \cap \text{m\lambda} \cap \text{m\lambda} \cap \text{m\lambda}}$ 产生白色沉淀 结论: 试液中含有 SO_4^2 -离子

- 9. 可用来鉴别己烯、甲苯、乙酸乙酯、苯酚溶液的一组试剂是()
- A. 氯化铁溶液、溴水

B. 碳酸钠溶液、溴水


C. 酸性高锰酸钾溶液、溴水

- D. 酸性高锰酸钾溶液、氯化铁溶液
- 10、下列各组物质仅用蒸馏水不能鉴别的是()
- A、苯、酒精、硝基苯

B、食盐、烧碱、硝酸铵

C、蔗糖、硫酸铜粉末、碳酸钙粉末 D、氧化铜、二氧化锰、活性炭

- 11. 只用组内溶液相互混合就能鉴别的组别是
- A. Na₂SO₄, BaCl₂, KNO₃, NaCl B. NaCl, AgNO₃, NaNO₃, HCl
- $C.\ \ NaOH\ ,\ \ Na_2SO_4\ ,\ \ FeCl_3\ ,\ \ MgCl_2 \\ \hspace{2cm} D.\ \ \ Na_2SO_4\ ,\ \ NaNO_3\ ,\ \ CaCl_2\ ,\ \ NaCl$
- 12. 下图是分离乙酸乙酯、乙酸和乙醇混合物的实验操作流程图,此过程中所涉及的三次分 离操作分别是()
- A. ①蒸馏②过滤③分液
- B. ①分液②蒸馏③蒸馏
- C. ①蒸馏②分液③分液
- D. ①分液②蒸馏③结晶、过滤

第十讲 定量实验

【基础知识整理】:

定量实验

(1) 一定物质的量浓度溶液的配制:
①所用仪器:。
②实验步骤:
第一步: 计算, 固体以克为单位, 液体以毫升为单位;
第二步:,量筒不必洗涤;
第三步:,在烧杯中溶解或稀释过程中放出大量热的物质(如 NaOH、浓 H_2SO_4 时,溶解后需;
第四步:转移和洗涤,转移时要用
第五步: 定容和摇匀,往容量瓶中加水
(2) 中和滴定:
①所用仪器:。
②所用药品:标准液、待测液、指示剂(甲基橙、酚酞,若强酸与弱碱反应,最好选前者;若强碱与弱酸反应,最好选后者)。
③实验步骤:
第一步: 检查和洗涤。
若滴定管不漏水, 先用, 再用, 用待测液洗涤盛待测液的滴定管 2~3 次;
第二步:装液体。
取标准液、除气泡、调零点、记录。取一定体积待测液,注入锥形瓶中并滴加几滴指示剂;
第三步:滴定。
当,即达到终点,停止滴定、记
录。重复 2~3 次,取平均值计算。
(3) 硫酸铜晶体结晶水含量的测定:
①所用仪器:。
②实验步骤: "四称"、"两热"
第一步: 称量(W ₁ g); 第二步: 称量(W ₂ g);
第三步: 固体加热至; 第四步: 冷却称重(W ₃ g);
第五步: 再加热; 第六步: 冷却称重(连续两次称量的误差g);

第七步: 计算(设化学式为 CuSO₄• xH₂O) X= ______ ③注意事项: a. 称量前研细; b. 小火加热; c. 在干燥器中冷却; d. 不能用试管代替坩埚; e. 加热 要充分但不"过头"(否则 CuSO4分解变黑)。 (4)其他定量实验。 如测量纯度、浓度、化学式、结构式等实验。

基础题:

- 1. 以下记录的数据不符合实验事实的是()
- A. 用量筒量取 3.3 mL 蒸馏水
- B. 用托盘天平称取 3.5 克氢氧化钠固体
- C. 用电子天平称取 2.100 g NaCl 固体 D. 用广范 pH 试纸测得某溶液 pH 为 7.2
- 2. 若要精确配制 100 mL 0.10 mol/L NaOH 溶液,则最好选用容量瓶的规格是()
- A. 50 mL

- B. 100 mL C. 250 mL D. 1000 mL
- 3. 中和滴定中,视线应注视()
- A. 滴定管内液面变化 B. 液滴滴出速度 C. 滴定管刻度 D. 锥形瓶中 溶液颜色变化

- 4. 中和滴定时,用于量取待测液体积的仪器是(
- A. 胶头滴管 B. 量筒 C. 滴定管 D. 烧杯

- 5. 测定硫酸铜晶体 ($CuSO_4 \cdot xH_2O$) 中 x 值的实验过程如下:

完成下列填空:

- (1)第 1 次称量的是_____
- (2)灼烧时,当 CuSO₄·xH₂O 晶体的颜色由 完全变为 ,停止加热。
- (3)必须要进行恒重操作的原因是_____
- (4)各次称量的数据如下表:

称量	第1次	第2次	第3次	第4次	第5次
质量 (g)	m_1	m_2	m_3	m_4	m_4

则 CuSO₄·xH₂O 中的 x=____。

- (5)下列操作会导致 x 值偏高的是 (选填编号)。
 - a. 坩埚未干燥
- b. 加热过程中有晶体溅失
- c. 灼烧后坩埚在空气中冷却 d. 恒重操作时,连续两次称量的结果相差不超过 0.001 g
- 6. 某学生用 0.1250mol/L 的 KOH 标准溶液滴定未知浓度的盐酸, 其操作分解为如下几步:

A. 移取 20.00ml 待测	則盐酸溶液注入清	音净的锥形瓶,并	-加入 2~3 滴酚酞	ζ		
B. 用标准溶液润洗剂	商定管 2~3 次					
C. 把盛有标准溶液的碱式滴定管固定好,调节滴定管尖嘴也充满溶液						
D. 取标准 KOH 溶液	D. 取标准 KOH 溶液注入滴定管至 0 刻度以上 2~3cm					
E. 调节液面至 0 或 0)刻度以下,记了	下读数				
F. 把锥形瓶放在滴氮	E管下面,用标准	ŧ KOH 溶液滴定	至终点并记下滴	定管液面的刻度。		
请就上述实验步骤完	成填空:					
(1)正确操作步骤的顺	序是(用序号字	母填写)B→	>C->>A-	→F		
(2) 若缺少 B 操作, 会	使滴定结果	(填"	偏高"或"偏低	",下同)		
(3)进行 A 操作之前,	若先用待测溶液	[润洗锥形瓶,则	会使滴定结果	o		
(4)判断到达滴定终点	的实验现象是			o		
(5)某同学进行 2 次中				F液的体积分别如表,		
试计算盐酸的浓度(效数字)				
	实验编号	1	2			
	V(KOH)(ml)	20.28	20.26			
提高题:						
1. 刻度"0"在上方的	用于测量液体体和	识的仪器是()			
A. 滴定管 B. 量	量筒 C. 烧材	D. 锥形荆	瓦			
2. 进行中和滴定时,	事先不应该用所	「盛溶液洗涤的仪	(器是()			
A. 酸式滴定管 B	. 碱式滴定管	C. 锥形瓶	D. 量筒			
3. 在 25mL 的碱式流放出,流入量筒内,			0mL 刻度处,现	将滴定管内溶液全部		
A. 5mL B. 20	mL C. 大于 5	5mL D. 小	·于5mL			
4. 用标准浓度的盐酸 色变化应该是(E的氢氧化钠,若	用甲基橙为指示	剂,滴定终点时的颜		
A. 由黄色变成红色		B. 由黄色变为				
C. 由橙色变成红色		D. 由红色变为	为橙色			
5. 用标准浓度的氢氧说明恰好达到滴定终		E未知浓度的盐酸	氵 ,使用酚酞做为	指示剂,下列叙述中		
A. 由红色变为深红色	<u>五</u>	B. 由无色变为	深红色			
C. 由浅红色变成深线	工色	D. 由无色变为	浅红色			

- 6. 用已知物质的量浓度的盐酸滴定未知物质的量浓度的氢氧化钠溶液,下列操作会导致测 定结果偏高的是()
- A. 用标准的盐酸溶液润洗酸式滴定管 2-3 次 B. 用待测碱液润洗碱式滴定管 2-3 次
- C. 用待测碱液润洗锥形瓶 2-3 次 D. 用蒸馏水润洗锥形瓶 2-3 次

- 7. 酸碱完全中和时()
- A. 酸与碱物质的量一定相等 B. 酸提供的 H+和碱提供的 OH-的物质的量相等
- C. 酸与碱的质量相等
- D. 溶液呈中性
- 8. 请填写实验报告中的空格:

【实验名称】硫酸铜晶体中结晶水含量的测定

【实验原理】设待测硫酸铜晶体的化学式为 $CuSO_4 \cdot xH_2O$,则该硫酸铜晶体受热失去全部结 晶水的化学方程式为

【实验仪器】电子天平、坩埚、坩埚钳、泥三角、酒精灯、干燥器、玻璃棒、铁架台(附铁 圈、铁夹)

【实验步骤】(1)准确称量瓷坩埚的质量。

- (2) 在瓷坩埚中加入约2g硫酸铜晶体,并称量。
- (3) 把盛有硫酸铜晶体的瓷坩埚放在泥三角上慢慢加热,直到蓝色完全变白,然后把坩埚 移至干燥器中冷却到室温,并称量。
- (4) 重复(3)的实验进行恒重操作,直至两次称量结果相差不超过 0.001 g。

【数据记录与处理】

步骤		质量 (g)		
<i>3</i> 3 <i>x</i>		第一次实验	第二次实验	
	瓷坩埚	29.563	30.064	
	瓷坩埚+硫酸铜晶体	31.676	32.051	
称量	第一次加热后瓷坩埚+样品	30.956	31.343	
小里	第二次加热后瓷坩埚+样品	30.918	31.343	
	第三次加热后瓷坩埚+样品	30.918	31.343	
	第四次加热后瓷坩埚+样品	30.918		
	无水硫酸铜质量	1.355		
\1 ##x	结晶水质量		0.708	
计算	x 的值(保留两位小数)			
		_		
	x 的平均值(保留两位小数)			

【分标	听与讨论】					
		定验求 x 平均值	直的原因是		0	
			x 的值将受到怎			"或"无影响")
					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			;			
			———— [,] 却			
		- 1 /2KBB 1 - V				
拓展	とと					
水硫醇方法。	酸铜。依据 。请将有关	硫酸铜晶体受 内容填入下表	开始失去部分结。 热失去结晶水的事 中空白部分(M((事实,可以设计硕 CuSO ₄)=160g/mo	荒酸铜晶体结晶 ol,M(H ₂ O)=18.	水含量的测定
(1) 从	下列仪器	选出所需仪器	(用标号字母填写	<u> </u>	o	
(A)	电子天平	(B) 坩埚钳	(C) 试管夹 (D)) 酒精灯 (E)	蒸发皿 (F) 玻	璃棒
(G)	坩埚(H) 干燥器 (I)	石棉网 (J) 三脚	印架 (K)泥三	三角	
除上述	述仪器外,	还需要的仪器	是	0		
(2) 实 验 记	坩埚质量	坩埚和晶体 的 总 质 量 W ₁ (g)	加热后坩埚和 剩余固体的质 量 W ₂ (g)	结晶水含量 的测定值(保 留2位小数)	实验误差(保留两位小数)	误差(填"偏 高"、"偏 低")
录	11.685g	13.691g	12.948g			
(3)	造成本次	误差可能的原[大 大	(填序号)	<u> </u>	
误差分		坩埚不干燥 放在空气中冷	b. 加热时有 却	T晶体溅出	c. 加热时坩埚	呙内物质变黑
析	你认为还 (写出其]其他原因			
(4)	①通过实	验知道,要完成	成此实验,至少要	E 称量	次	
实 验	a. 2	b. 3	c. 4	d. 5		
沙小	②如果硫	酸铜晶体样品	不纯,测定结果_			
结	a. 没有偏	i差 b	一定偏小 c.	一定偏大	d. 无法确定	
10. 5	实验室用浓	度为 0.500mol	/L 的标准氢氧化	钠溶液来测定未	知浓度的盐酸,	填空:
(4)	>>>		以分分份的社会		江南沙牡目	オヨバ

(1)滴定管使用前,先要检查滴定管的活塞_____,活塞旋转是否灵活。

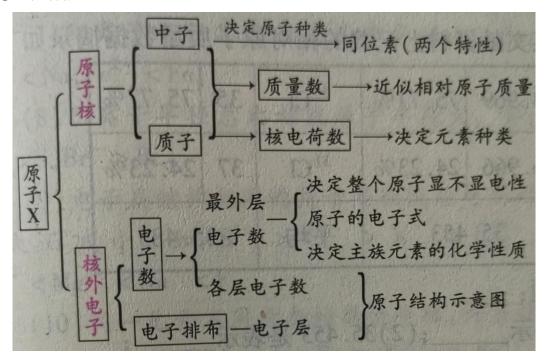
(2) 把标准氢氧化钠溶液注入用标准氢氧化钠溶液润洗过的蓝色手柄滴定管中,使液面位于______位置,记录读数。

一滴氢	氧化钠溶液	ō,指示剂的颜色由_	色变为	_色,	并在半分钟内溶液颜色不发生
变化,	停止滴定,	记录读数。			

(4) 重复(2)和(3)操作,并记录数据。再次滴定消耗氢氧化钠溶液的数据如下表:

次数	滴定前读数	滴定后读数
1	0.40	20.10
2	0.10	

第 2 次滴定后滴定管的读数如右图所示,将这一读数填入上表中。根据表中的数据计算出盐酸的浓度为_____mol/L。


已知盐酸的准确浓度为 0.490mol/L,则实验误差为_____%。

- (5)会造成实验结果偏高的操作是____(填写编号)。
- a. 锥形瓶用蒸馏水洗净后,立即装入待测溶液
- b. 振荡时溶液溅出锥形瓶外
- c. 滴定时蓝色手柄滴定管中的液体滴在锥形瓶外

第十一讲 原子结构

【基础知识整理】:

①原子的构成

②构成原子或离子粒子间的数量关系

一个原子中:
(1)质子数====原子序数。
(2)离子电荷=数 一数。
(3)质量数(A)=质子数(Z)+中子数(N)。
(4)质子数(Z)=阳离子的核外电子数+阳离子的电荷数。
(5)质子数(Z)=阴离子的核外电子数一阴离子的电荷数。
(6)质量数近似等于该同位素的。
③核外电子排布规律
(1) 每一电子层所容纳的电子数最多为
(2)最外层电子数最多不超过 8, 若最外层为 K 层, 电子数最多不超过 2。
①若最外层已排满 8 个电子(He 排满 2 个电子),则该原子结构为稳定结构,形成的原子为
稀有气体原子。
②若最外层电子数小于4,它一般易失去最外层较少的电子而使次外层暴露,达8个电子的
稳定结构,形成的单质大部分为金属单质,表现性。
③若最外层电子数大于4,一般易得到电子或形成共用电子对来完成最外层8个电子的稳定
结构,形成的单质一般为非金属单质,大部分表现性。
(3)次外层电子数最多不超过
(4)电子能量低的离原子核近,能量高的离原子核远。
④元素与同位素
(1)元素: 具有
(2)同位素: 具有的原子互称为同位素。
注:①同一元素的各同位素原子质量数不同,核外电子数相同,化学性质几乎完全相同。
②不同同位素的原子构成的单质是性质几乎相同的不同单质。
③不同同位素构成的化合物是不同的化合物, $H_2O_{\infty}D_2O_{\infty}T_2O$ 的物理性质 同,化学性

质几乎同。 ⑤几个概念
(1)质量数:将原子核中
(2)同位素的相对原子质量的计算式:
$Mr = - $ 个同位素原子的质量/(一个 12 C 原子的质量÷12)
(3)同位素的近似相对原子质量是指同位素原子的近似相对原子质量,数值上等于该同位素
原子的质量数。
(4)元素(精确)的相对原子质量是根据各种核素的相对原子质量和它们在原子总数中所占的
组成分数计算的平均值。
其计算公式为: Mr=A • a%+B • b%+C • c%+…
其中 A、B、C 分别为各同位素的相对原子质量; a%、b%、c%分别为自然界中各同位
素所占的原子的含量或原子个数的组成分数; Mr 是元素(精确)的相对原子质量。)
(5)元素的近似相对原子质量是根据各种核素(同位素)的质量数按上法计算出来的。
⑥核外电子数相同的微粒
(1)核外电子总数为 10 个电子的微粒共有 15 种。阳离子有:; 阴语
子有:NH ₂ ; 分子有 Ne,。
(2)核外电子总数为 18 个电子的微粒共有 16 种。阳离子有; 阴离子?
P ³⁻ ,。
(3)核外电子总数及质子总数分别相同的离子有: (或 F , OH , NH_2)。
⑦元素的微粒半径大小比较规律
(1)同周期原子半径随原子序数递增逐渐减小(稀有气体元素除外)。
如第三周期中: Na>>>> Cl 。
(2) 同主族原子半径随原子序数的递增逐渐增大。如第 IA 族中: Li<<< <cs< td=""></cs<>
(3)同周期阳离子半径随原子序数递增逐渐减小。如第三周期中: Na+> > 。
(4)同周期阴离子半径随原子序数递增逐渐减小。如第三周期中: $P^{3-} > S^{2-} > Cl^-$ 。
(5)同主族阳离子半径随原子序数递增逐渐增大,如第 IA 族中: < < Rb^+ < Cs^+
(6)同主族阴离子半径随原子序数递增逐渐增大,如第 $VIIA$ 族中: $F < _{} < _{} < _{} < _{}$ 。
(7)阳离子半径总比相应原子半径小。如 $Na^+ < Na$ $Fe^{2+} < Fe$
(8)阴离子半径总比相应原子半径大。如: $S^{2-}>S$ $Br^{-}>Br$ 。
(9)电子层结构相同的离子半径随核电荷的增大而减小。如: $S^{2-} > Cl^{-} > K^{+} > Ca^{2+}$
$Al^{3+} < \underline{\hspace{1cm}} < \underline{\hspace{1cm}} \circ$
(10) 同一元素不同价态的离子半径,价态越高则离子半径越小。如: $Fe>$ $>Fe^{3+}$
$_{}$ >H >H $^+$ 。
基础题:
1. 根据 α 粒子轰击金箔的实验现象,提出原子结构行星模型的科学家是()
A. 卢瑟福 B. 伦琴 C. 道尔顿 D. 汤姆孙
2. 下列各组微粒中, 互为同位素的是 ()
A. ${}_{1}^{2}H_{2}$ 和 H_{2} B. 氢原子和氢离子 C. H_{2} O 和 D_{2} O D. ${}_{20}^{42}Ca$ 和 ${}_{20}^{40}Ca$

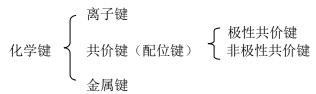
3. 据报道,某些建筑材料会产生质子数为8	6,质量数为 222 的放射性氡(Rn),从而对人
体产生伤害,该原子的中子数和质子数	的差值为()
A. 136 B. 50 C. 86 D.	222
4. 下列叙述不正确的是()	
A. 原子最外层电子数不超过8个	B. 原子中易失去的电子能量一定最低
C. 原子的次外层电子数不一定是 8 个或 18	个 D. M 层电子的能量比 L 层电子的能量高
5. 下列各组微粒中,核外电子数相等的是(
A.Na ⁺ 和Cl ⁻ B.Cl ⁻ 和Ar	C. Mg和Mg ²⁺ D. S和S ²⁻
6. 某元素的原子核外电子排布中, K 电子层	器和 L 电子层电子数之和等于 M 电子层和 N 电
子层的电子数之和,则该元素的核电荷数	(为 ()
A. 30 B. 12	C. 17 D. 20
7. 在核电荷数为1—20的元素的原子中,次外	层电子数为最外层电子数2倍的元素是()
A. 核电荷数为 3 的元素	B. 核电荷数为 14 的元素
C. 核电荷数为 6 的元素	D. 核电荷数为 16 的元素
8. Na 和 Na ⁺ 含有相同的()	
A. 质子数 B. 电子数 C. 电子层数 D.	最外层电子数
	X ^{m+} , _b Y ⁿ⁺ , _c Z ⁿ⁻ 和 _d R ^{m-} 四种离子的电子层结构相同,
则下列关系正确的是() A. a-c=m-n B. a-b=n-m C. c-d=	m+n D h-d−m+n
10. 比核电荷数为 11 的元素的原子少 1 个电	
A. Ne B. NH_4	
11. 下列四种微粒中,属于阴离子的是(
A. 35 个质子,44 个中子,36 个电子	
C. 37 个质子, 48 个中子, 36 个电子	
12. 某元素的原子核外有三个电子层,最外)	
A. 铝 B. 氮 C	
13. 下列微粒中质子数与核外电子数均与 H	
A. Cl^- B. Na^+ C. Ne	
14. 钠原子核中有 11 个质子,在下面的推论	
A. 钠原子核内必有 11 个中子	B. 钠原子核内必有 11 个电子
C. 钠原子核外还有 11 个电子	D. 钠原子必带 11 个正电荷
15. 下列电子式书写正确的是()	
A_{\cdot} :N: B_{\cdot} Na^{+} C_{\cdot}	
16. 下列各组微粒的电子层结构与氩的电子	
A. F ⁻ 和O ²⁻ B. Cl和S C. 1	K ⁻ 和 Cl ⁻ D. Ca 和 K

17. 下列各对物质中, 互为同位素的是()
① ^{12}C 、 ^{13}C ② H_2O 、 T_2O ③ Cl 、 Cl ④红磷和白磷 ⑤ ^{35}Cl 、 ^{37}Cl ⑥ O_2 、 O_3
A. 135 B. 125 C. 15 D. 1235
18. 根据下列几种粒子的结构示意图,回答问题: (填编号)
(1) 其中属于阴离子的是,
(2)属于金属元素的是,
(3) 具有相似化学性质的是。
提高题:
1. 某元素阳离子 R^{n+} ,核外共有 x 个电子,原子的质量数为 A ,则该元素原子里的中子数
为()
A. $A-x-n$ B. $A-x+n$ C. $A+x-n$ D. $A+x+n$
2. 原子的种类决定于原子的()
A. 核内质子数和中子数 B. 核电荷数
C. 核外电子数 D. 相对原子质量
$\mathbf{\hat{z}}\mathbf{R}^{\mathbf{n+}}$ 表示,下列关于该粒子的叙述正确的是()
A. 所含质子数 $=A-n$ B. 所含中子数 $=A-Z$
C. 所含电子数= $Z+n$ D. 质量数= $Z+A$
4. 汤姆逊提出葡萄干面包模型、卢瑟福提出行星模型的理论或实验依据分别是()
A. 铀盐的放射性实验、α粒子散射实验 B. 电子的发现、α粒子散射实验
C. X 射线的发现、电子的发现 D. X 射线的发现、铀盐的放射性实验
5. 某元素 R 原子的质量数为 A ,它的离子 R^n 核外共有 x 个电子,则该元素原子里的中子数为(
A. $A-x$ B. $A+n-x$ C. $A-n-x$ D. $A+x+n$
6. 在国际相对原子质量表中 C 的相对原子质量是 12.01,这是指碳的()
A. 质量数 B. 相对原子质量 C. 同位素的相对原子质量 D. 元素的平均相对原子质量
7. 下列叙述错误的是: ()
A. 40K 和 40Ca 的原子中质子数和中子数都不同,但它们的质量数相同
B. ¹ H ₂ 和 ² H ₂ 互为同位素 C. 互为同位素的原子,它们核内质子数一定相等
D. 互为同位素的原子,它们的原子质量数一定不等
8. 下列有关等物质的量的 ${}^{12}_{6}C$ 和 ${}^{14}_{6}C$ 的叙述中正确的是()
①含有相同数目的原子②含有相同物质的量的质子③属于同种元素④具有相同的质量⑤中
子数相等⑥电子数相等⑦化学性质几乎完全相同
 A. ②③⑤ B. ①②③ C. 全部正确 D. 除④和⑤外都正确 O. 已知 R²⁺离子核外有 a 个电子, b 个中子, 表示 R 原子符号正确的是
A. ${}^{b}_{a}R$ B. ${}^{a+b-2}_{a-2}R$ C. ${}^{a+b+2}_{a+2}R$ D. ${}^{a+b}_{a-2}R$

10. 对原子核外电子以及电子的运动,下列描述正确的是()
①可以预测某一时刻电子所处的位置 ②电子质量很小且带负电荷
③运动的空间范围很小 ④高速运动 ⑤有固定的运动轨道
⑥电子的质量约为氢离子质量的 $\frac{1}{1836}$
1630
A. 1)23 B. 2346 C. 3456 D. 56
11. 下列各微粒中, 核外电子总数相等的是 ()
A. CO ₂ 和 NO ₂ B. N ₂ 和 CO C. NH ₄ ⁺ 和 H ₃ O ⁺ D. H ₂ S 和 H ₂ O
12. 下列叙述中,正确的是 ()
A. 两种微粒,若核外电子排布完全相同,则其化学性质一定相同
B. 凡单原子形成的离子,一定具有稀有气体元素原子的核外电子排布
C. 两原子,如果核外电子排布相同,则一定属于同种元素
D. 阴离子的核外电子排布一定与上一周期稀有气体元素原子的核外电子排布相同
13. 与 OH ⁻ 具有相同质子数和电子数的微粒是 ()
$A. \ F^- \qquad \qquad B. \ NH_3 \qquad \qquad C. \ H_2O \qquad \qquad D. \ Na^+$
14. 某元素的原子核外有三个电子层, M 层的电子数是 L 层电子数的 $\frac{1}{2}$,则该原子是(
A. Li B. Si C. Al D. K
15. 某元素原子的最外层电子数为次外层电子数的 3 倍,则该元素原子核内质子数(
A. 3 B. 7 C. 8 D. 10
16. 今有X、Y两种原子, X原子的M层比Y原子的M层多一个电子, Y原子的L层电子数
恰为X原子M层电子数的二倍,则X、Y各为()
A. 硅原子和铝原子 B. 氮原子和铍原子
C. 硅原子和钠原子 D. 氯原子和钠原子
17. 下列各组微粒都具有相同质子数和电子数的是 ()
A. CH_4 , NH_3 , H_2O , Ne B. OH^- , NH_4^+ , H_3O^+ , Ne
C. NH ₄ ⁺ 、H ₃ O ⁺ 、Na ⁺ 、HF D. OH ⁻ 、F ⁻ 、Mg ²⁺ 、Na ⁺
18. 两种微粒的质子数和电子数相同,它们不可能是 ()
A. 一种阳离子和一种阴离子 B. 一种单质分子和一种化合物分子
C. 两种不同的阳离子 D. 两种不同的阴离子
19. 下列属于同位素的是,属于同素异形体的是,属于同种原子的是
A、 ¹ H 和 D B、 ² H 和 D C、红磷和白磷
D、H ₂ O 和 D ₂ O E、金刚石和石墨 F、Mg 和 Mg ²⁺
20. 已知 ³⁵ Cl 的丰度 75%, ³⁷ Cl 的丰度是 25%, 求氯元素的近似相对原子量
21. 铜有两种天然同位素, ⁶³ Cu、 ⁶⁵ Cu,参考铜元素的近似相对原子量为 63.5,求 ⁶⁵ Cu 的原
子个数百分含量为。

拓展题

22. 已知 A 元素形成的 A_2 单质的分子量有 3 种,70、72、74,则 A 元素有____种同位素。23. 填空:


平均		.453	平均	35	485
³⁷ C1	36.966	24.23%	³⁷ Cl	37	24.23%
³⁵ Cl	34.969	75.77%	³⁵ Cl	35	75.77%

(1)34.969 表示	(2) 35.4.	53 表示			_
(3)35 表示	(4) 35.4	85 表示			
(5) 24.23%表示					
24. 己知 A ²⁻ 、B ⁻ 、C ⁺ 、D ²⁺ 、E ³⁺	五种简单离子的	核外电子数均	匀为 10,与旬	它们对应的原	[子的
核电荷数由大到小的顺序是 25. 有 A、B、C、D、E 五种微料					个电
子;②B 微粒得到2个电子后,其	其电子层结构与 N	fe 相同; ③C	微粒带有2	个单位的正	电荷,
核电荷数为 12; ④D 微粒核外有	18个电子,当失	去2个电子时	付呈电中性;	⑤E 微粒不	带电,
其质量数为1。					
(1)请依次写出各微粒的符号 A	AB	C	D	E	
(2) C 微粒的结构示意图为	o				
(3) A、D 两元素形成的化合物]的化学式是	о			
(4) A 微粒的电子式为	o				
(5) B 微粒的电子式为	0				
(6) C 微粒的电子式为	o				

第十二讲 化学键 晶体

知识要点梳理:

一、化学键(chemical bond)是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。化学键包括离子键、共价键、金属键。

二、离子键、共价键、金属键的比较

一、					
化学键类型	离子键	共价键	金属键		
概念	阴、阳离子间通过静电 作用所形成的化学键	原子间通过共用电子 对(电子云重叠)所 形成的化学键	金属阳离子与自由电子通过相互作用而形成的化学键		
成键微粒	阴、阳离子	原子	金属阳离子和自由电子		
成键性质	静电作用	共用电子对 (电子云重叠)	电性作用		
形成条件	活泼金属与活泼非金属	非金属与非金属	金属内部		
强弱因素	①离子电荷 ②离子半径	①键长 ②键能	①金属原子半径 ②成键电子数		
特点	无方向性、无饱和性	有方向性、有饱和性			
实例	MgO、NaCl、CaF ₂ 、 Na ₂ O、K ₂ S、MgCl ₂ ······	H ₂ 、Cl ₂ 、N ₂ 、HCl、 H ₂ O、NH ₃ 、CH ₄ 、CO ₂ 、 H ₂ S、NaOH、Na ₂ O ₂ 、 NH ₄ Cl、金刚石······	Fe、Mg、合金······		

三、非极性共价键和极性共价键的比较

	非极性共价键	极性共价键
概念	同种元素原子形成的共价键	不同种元素原子形成的共价键
194.心	共用电子对不发生偏移	共用电子对发生偏移
原子吸引电子能力	相同	不同
共用电子对	不偏向任何一方	偏向吸引电子能力强的原子
成键原子电性	电中性	显部分电性
形成条件	由同种非金属元素组成	由不同种非金属元素组成

四、离子晶体、原子晶体、分子晶体和金属晶体的比较

		离子晶体	原子晶体	分子晶体	金属晶体
存在微粒		阴、阳离子	原子	分子	金属阳离子、自由 电子
微粒	立间作用	离子键	共价键	分子间作用力 (范德华力)	金属键
主要	熔沸点	熔沸点较高	熔沸点很高	熔沸点较低	差异较大(钨很 高,汞较低)
物 理	硬度	硬而脆	硬度很高	硬度较低	有良好的延展性 和机械加工性能

性质	导电性	固体不导电,熔融 状态导电	不导电	固体或熔融状 态均不导电	良导体
	其它	易溶于极性溶剂	不溶于大多数溶剂	符合"相似相 溶"原理	金属光泽
3	实例	食盐、氢氧化钠、 氧化镁等	金刚石、晶体硅、二 氧化硅、碳化硅等	干冰、冰醋酸、 碘、氯化氢等	镁、铝、合金等

五、晶体熔沸点的比较

- 1. 不同类晶体: 一般情况下,原子晶体>离子晶体>分子晶体
- 2. 同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。
 - (1) 离子晶体: 离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。
 - (2) 分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。
 - (3) 原子晶体: 键长越小、键能越大,则熔沸点越高。
- 3. 常温常压下状态
 - (1) 熔点: 固态物质>液态物质
 - (2) 沸点: 液态物质>气态物质

六、化学键与物质类别关系规律

- (1) 只含非极性共价键的物质:同种非金属元素构成的单质,如: I_2 、 N_2 、 P_4 、金刚石、晶体硅等。
- (2) 只含有极性共价键的物质:一般是不同种非金属元素构成的共价化合物,如: $HCl \times NH_3 \times SiO_2 \times CS_2$ 等。
 - (3) 既有极性键又有非极性键的物质: 如, H_2O_2 、 C_2H_2 、 CH_3CH_3 、 C_6H_6 (苯)等。
- (4) 只含有离子键的物质:活泼非金属元素与活泼金属元素形成的化合物,如: Na_2S 、CsCl、 K_2O 、NaH 等。
- (5) 既有离子键又有非极性键的物质,如: Na_2O_2 、 Na_2S_x 、 CaC_2 等。
- (6) 既有离子键又有极性键的物质,如: NaOH 等。
- (7) 由离子键、共价键、配位键构成的物质,如: NH₄Cl等。
- (8) 由强极性键构成但又不是强电解质的物质,如: HF等。
- (9) 只含有共价键而无范德华力的化合物,如:原子晶体 SiO₂、SiC 等。
- (10) 无化学键存在的物质:稀有气体,如氩等。
- (11)在共价化合物中一定不存在离子键,如 HF、 H_2O 分子中只有共价键。如果含有离子键,那么此物质就属于离子化合物。
- (12)在离子化合物中一定含有离子键,也可以存在共价键,如 Na_2O_2 、NaOH、 NH_4Cl 等离子化合物中既有离子键又有共价键。
- (13)含共价键的物质不一定是共价化合物,如非金属单质 $(O_2, Cl_2, N_2$ 等)中含共价键,但不属于化合物;某些离子化合物(如 NaOH、Na₂SO₄、NH₄Cl 等)中既含离子键,也含共价键,属于离子化合物。
- 七、化学键与物质变化的关系
- 1) 与化学变化的关系

化学反应实质是旧化学键的断裂和新化学键的形成。

任何反应都必然发生化学键的断裂和形成。

2)与物理变化的关系

发生物理变化的标志是没有生成新物质,可能伴随化学键断裂,但不会有新化学键形 成: 也可能没有化学键断裂, 只是破坏了范德华力, 如冰的融化和干冰的气化。

	化学键	分子间作用力
概念	相邻的原子间强烈的相互作用	物质分子间存在的微弱的相互作用
范围	分子内或某些晶体内	分子间
能量	较大	很弱
性质影响	主要影响物质的化学性质	主要影响物质的物理性质

八、晶体熔、沸点的判断:

①不同类型晶体熔、沸点高低的一般规律为:原子晶体>离子晶体>分子晶体。

②同种晶体类型的物质:晶体内粒子间的作用力越大,熔、沸点越高

原子晶体:熔点: 金刚石(C)>石英(SiO2>金刚砂(SiC)>晶体硅(Si)。

离子晶体: 熔点: MgO>MgCl₂>NaCl>CsCl。 分子晶体: 熔沸点: H2O>H₂Te>H₂Se>H₂S。

九、用电子式表示离子化合物及其形成过程

原子的电子式+原子的电子式+… → 化合物的电子式

基础题:

- 1、下列物质中属于离子化合物的是()
 - A. 苛性钠 B. 碘化氢 C. 硫酸 D. 醋酸
- 2.下列性质中,可证明某化合物内一定存在离子键的是()
- A.可溶于水
- B.具有较高的熔点
- C.水溶液能导电 D.熔融状态能导电
- 3. 下列各项表达正确的是()
- B. 的结构示意图: 9 27 A. 水的分子式为 H₂0
- C. 二氧化碳的结构式: 0-C-0 D. CaCl₂的电子式: Ca²⁺[:Cl:]₂
- 4.关于离子化合物,下列说法正确的是(
- A、离子化合物是含有离子键的化合物
- B、离子化合物中存在单个化合物分子
- C、离子化合物的固体或水溶液都能导电 D、离子化合物熔化或溶解时离子键没有破坏
- 5.下列关于共价化合物的叙述正确的是(

A、共价化合物中一定存在共价键 B、共价化合物中可能存在共价键	
C、共价键只存在于共价化合物中	
D、共价化合物中既可能存在离子键,也可能存在共价键	
6.下列物质中,含有共价键的离子化合物是()	
A、HCl B、CaF ₂ C、H ₂ O D、NaOH	
7.下列物质的分子中,化学键数最多的是()	
A. CH ₄ B. NH ₃ C. HI D. I ₂	
8.下列化合物,仅由共价键形成的一组是()	
$A \ \ HBr \ \ CO_2 \ \ CaCO_3 \ \ \ B \ \ HCl \ \ H_2S \ \ CH_4 \ C \ \ \ HCl \ \ H_2O \ \ NaOH \ \ D \ \ HF \ \ N_2 \ ,$	NH ₄ Cl
9.关于分子间作用力的说法错误的是()	
A. 氯分子间的作用力小于碘分子 B. 是一种较弱的化学键	
C. 其大小影响分子的稳定性 D. 直接影响物质的熔沸点	
提高题:	
10. N _A 代表阿伏加德罗常数,下列说法正确的是()	
A. 在 Na ₂ O ₂ 中阴阳离子个数比为 1: 1 B.1molMgCl ₂ 中含有的离子数为 2N _A	
C. 1molCH ₄ 分子中共价键总数为 4N _A D. 53g 碳酸钠中含 N _A 个 CO ₃ ²⁻	
11.下列有关化学键的说法正确的是 ()	
A. 化学键是相邻原子间的相互作用,它存在于分子、原子团、晶体中	
B. 离子键是阴、阳离子通过静电作用而形成的化学键	
C. 共价键只存在于共价化合物中 D. 离子化合物中只能存在离子键	
12.下列变化不需要破坏化学键的是 ()	
A. 加热分解氯化铵 B. 干冰汽化 C. 水通电分解 D. 氯化氢溶于水	(
13.下列分子中所有原子均满足最外层 8 电子结构的是 ()	
A、LiClB、NCl3C、PCl5D、CS214.在共价化合物中,化合价有正负的原因是()	
A、有金属元素存在 B、有电子得失	
C、有共用电子对偏移 D、既有电子得失,又有共用电子对偏移	
15. 有关晶体的下列说法中正确的是()	
A. 晶体中分子间作用力越大,分子越稳定 B. 原子晶体中共价键越强,熔点走	成高
C. 冰熔化时水分子中共价键发生断裂 D. 氯化钠熔化时离子键未被破坏	-1.4
16. 碳化硅 SiC 的一种晶体具有类似金刚石的结构,其中 C 原子和 S 原子的位置是交	₹替的。
在下列三种晶体①金刚石 ②晶体硅 ③碳化硅中,它们的熔点从高到低的顺序是	()
A. ①32 B. 23① C. 3①2 D. 2①3	
17. 下列各组物质中,均由分子构成的一组化合物是()	
$A. \ CO_2, \ NO_2, \ SiO_2 \\ B. \ CH_4, \ HNO_3, \ C_6H_6 \\ C. \ HD, \ H_2O_2, \ H_2O \\ D. \ NH_3, \ NH_3 \bullet H_2O, \ (M_2O_2) + M_2O \\ D. \ NH_3 \cap H_2O \\ D. \ NH_3 \cap H_3 \cap H_2O \\ D. \ NH_3 \cap H_3 \cap H_2O \\ D. \ NH_3 \cap H_3 \cap $	NH4) 2SO4
18. 共价键、离子键、范德华力都是微粒之间的不同作用力,下列①Na ₂ O ₂ ②SiO ₂ ③A	Ē
墨④金刚石⑤NaCl⑥白磷 含有上述两种结合力的是()	
A. ①②④ B. ①③⑥ C. ②④⑥D. ③④⑤	

拓展题:

19.下列说法中,正确的是()	
A、共价键只存在于单质和共价化合物中	B、离子化合物中一定有金属元素
C、完全由非金属元素组成的化合物一定是共	价化合物 D、离子键只存在于离子化合物中
20.下列叙述正确的是()	
A、CO ₂ 分子间存在共价键	B、CO ₂ 分子内存在共价键
C、Na ₂ O 与 CO ₂ 的化学键类型相同	D、盐酸中含 H^+ 和 Cl^- ,故 HCl 为离子化合物
21.下列各对化合物中,化学键类型相同的一	一组是()
(A) H ₂ S, MgCl ₂ (B) NaCl, HF	(C) MgCl ₂ , CaO (D) CCl ₄ , KCl
22.有甲乙丙丁四种元素,它们的原子序数位	发次是 6、10、11、17,下列判断错误的是(
(A) 丙和丁能生成含离子键的化合物	(B) 乙和丁不易化合
(C) 甲和丙很易生成气态氢化物	(D) 甲和丁能形成共价键
23.下列叙述正确的是()	
(A) 两个非金属原子间可能形成离子键	(B) 非金属原子间不可能形成离子化合物
(C) 离子化合物中可能有共价键	(D) 共价化合物中可能有离子键
24.下列说法正确的是()	
A. 离子化合物中一定含有金属元素	B. 含有共价键的化合物一定是共价化合物
C. 离子化合物一定存在离子	D. 含有离子键的化合物不一定是离子化合物

第十三讲 元素周期律元素周期表

知识要点梳理:

一、元素周期表编制原则

将电子层数目相同的各种元素,按照原子序数递增的顺序从左到右排成横行,再把不同横行中最外层的电子数相同的元素,按电子层数递增的顺序由上而下排成纵列。

二、元素周期表结构

横行——周期(周期数=原子核外电子层数)

纵行——族(主族元素的族序数=原子核外最外层电子数)

7 个横行 (7 个周期)

18 个纵行

(16个族)

3个短周期:一、二、三周期,元素种数分别为2,8,8;

3个长周期:四、五、六周期,元素种数分别为18,18,32;

1个不完全周期: 七周期,现有元素 26 种。

7个主族: IA族~VIIA族(第1列、2列,13列~17列)

7个副族: IB 族~VIIB 族 (第3列、7列,11列~12列)

1个VIII族: 第8列~10列

1 个零族: 第 18 列 (稀有气体)

三、元素周期律

元素的性质随着原子序数的递增而呈周期性的变化,这个规律叫做元素周期律。元素性 质的周期性变化是元素原子的核外电子排布的周期性变化的必然结果。

四、元素及有关物质的性质

1. 元素的原子半径

同一主族中,从上到下,随着原子序数的递增,原子半径逐渐增大;同一周期(稀有气体除外)中,从左到右,随着原子序数的递增,原子半径逐渐减小。

2. 元素的主要化合价

同主族,元素的化合价基本相同;同周期主族元素的最高化合价从+1——+7(第一周期, 氧、氟例外),最低化合价(非金属元素)从-4——-1;。

主族元素的最高正化合价等于它所在主族的序数。

非金属元素的最高正化合价和它的负化合价绝对值的和等于8。

3. 元素的金属性、非金属性

同主族元素从上到下,随着原子序数的递增,金属性逐渐增强,非金属性逐渐减弱。; 同周期元素从左到右,随着原子序数的递增,金属性逐渐减弱,非金属性逐渐增强。

元素金属性强弱的判断依据:

- ①从金属单质跟水(H2O)反应的难易程度;
- ②从金属单质跟酸(H)反应的难易程度;
- ③从金属的最高价氧化物对应水化合物的碱性强弱;
- ④相互之间的置换反应;
- ⑤构成原电池时电极性质:
- ⑥在金属活动性顺序表中的位置,等。

非金属性的强弱的判断依据:

- ①从非金属的最高价氧化物对应水化合物(即高价含氧酸)的酸性强弱;
- ②单质跟氢气反应的难易程度;
- ③气态氢化物的稳定性;
- ④相互之间的置换反应,等。

4. 单质的氧化性或还原性、简单离子的氧化性或还原性

同主族从上到下,随着原子序数的递增,单质氧化性逐渐减弱,还原性逐渐增强; 所对应的简单阴离子还原性逐渐增强。简单阳离子的氧化性逐渐减弱。

同周期从左到右,随着原子序数的递增,单质氧化性逐渐增强,还原性逐渐减弱; 所对应的简单阴离子还原性逐渐减弱。简单阳离子的氧化性逐渐增强。

5. 最高价氧化物所对应的水化物的酸碱性

同一主族中,从上到下,元素最高价氧化物对应水化物的酸性逐渐减弱,碱性逐渐增强;同一周期中,从左到右,主族元素最高价氧化物对应水化物的碱性逐渐减弱,酸性逐渐增强。

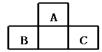
6. 气态氢化物的稳定性

同一主族中,从上到下,非金属元素的气态氢化物的热稳定性逐渐减弱;同一周期中, 从左到右,非金属元素的气态氢化物的热稳定性逐渐增强。

四、元素周期律的应用

- 1. 农药多数是含 Cl、P、S、N、As 等元素的化合物
- 2. 半导体材料都是周期表里金属与非金属接界处的元素,如 Ge、Si、Ga、Se 等
- 3. 催化剂的选择, 矿物的寻找等
- 4. 耐高温、耐腐蚀的特种合金材料的制取
- 5. 根据元素在周期表中的位置,推测它的原子结构和一定的性质;反过来,根据元素的原子结构,也可以推测它在周期表中的位置
- 6. 推断一些未学过的元素及其化合物的某些性质……

基础题:


1.卜列兀紊的原于半径依次减小的是	()

- A. Na, Mg, Al B. N, O, S C. P, Si, Al D. C, Si, P
- 2.决定元素种类的微粒是 ()
- A.质子和中子 B.质子 C.中子 D.电子
- 3.美国科学家将两种元素铅和氪的原子核对撞,获得了一种质子数为 118、中子数为 175 的超重元素,该元素原子核内的中子数和核外电子数之差为 ()
- A. 57 B. 47 C. 61 D. 293
- 4.据报道,上海某医院正在研究用放射性碘(¹ឆ I) 治疗肿瘤。该原子的原子核内的中子数与核外电子数之差为()
- A, 72 B, 19 C, 53 D, 125
- 5.某元素 R 原子的质量数为 A,离子 R^{n} -核外共有 x 个电子,该元素的原子核内中子数为()
- A. A-x B. A+n-x C. A-n-x D. A+n+x
- 6.质量数为37的原子,应该有()
- A. 18 质子, 19 中子, 19 电子 B、18 质子, 20 个中子, 18 个电子
- C. 19个质子, 18个中子, 20个电子 D.18个质子, 19个中子, 18个电子
- 7.下列离子的电子排布与氩原子核外电子排布不同的是()

A. Mg^{2+}	B. $S^{2^{-}}$	C. K ⁺	D. Cl
8.下列元素中	,原子半径最小的是()		
A. N	B. F C.	Mg D. Cl	
9.写出 1~18	号元素中符合下列条件的	原子或离子的结构示意图。	
(1) L层电子	子数是 M 层 2 倍的原子:		
(2) 某元素原	原子 L 层上的电子数为 K	层的 3 倍:	
(3) 某元素原	原子的最外层电子数等于	次外层电子数的 2 倍:	
(4)得到2个	、电子后, 电子总数与氩原	子的电子总数相同的离子:	
提高题:			
10.下列离子似	化合物中,阴、阳离子核外	小电子层数相差 2 的是()	
A、硫化钠	B、氟化镁	C、溴化钠	D、氟化钙
11.原子序数从	√3~10 的元素,随着核□	电荷数的递增而逐渐增大的	是()
A、电子层数	B、最外层电子数	C、原子半径	D、化合价
12 下列各化台	6物中,阳离子与阴离子	半径之比最小的是 ()	
A. LiI	B. LiF	C. NaCl D.	KBr
13.下列元素中	中,其最高价氧化物对应2	k化物的碱性最强的是()	
A. Na	B. Mg C. Al	D _v K	
14.下列性质比	比较中,正确的是()		
A. 热稳定性	: $H_2S>H_2O$	B. 酸性: H ₂ SO ₄ >H	ClO ₄
C. 氧化性: ($Cl_2 > Br_2$	D. 原子半径: Se>T	e
15.可用来判断	ff金属性强弱的依据是()		
A、原子电子	层数的多少	B、最外层电子数的	多少
C、最高价氧	化物的水化物的碱性强弱	D、等物质的量的金	国置换氢气的多少
16.同一短周期 的是()	月X、Y、Z 三种元素,其	气态氢化物分别是 HX、H ₂	Y、ZH3,则下列判断错误
A、热稳定性	$HX>H_2Y>ZH_3$	B、还原性 HX>H ₂ Y>ZH	H_3
C、原子半径	Z>Y>X	D、非金属性 X>Y>Z	
17.下列各组师	顶序正确的是()		
A. 原子半径	: S > Cl > K > Ca	B. 稳定性: SiH ₄ >	>PH ₃ >H ₂ O>HF
C. 离子半径:	: S ² ->Cl->K+>Ca ²⁺	D. 沸点: H ₂ O<	H ₂ S <h<sub>2Se<h<sub>2Te</h<sub></h<sub>

18.A、B、C 均为短周期元素,它们在周期表中的位置如下图:已知 B、C 元素的原子序数 之和是 A 元素原子序数的 4 倍,则 A、B、C 分别是()

- A, Be, Na, Al B, B, Mg, Si
- C, O, P, Cl D, C, Al, P

拓展题:

19.下列各组元素中,原子半径逐渐增大的是()

- A. I. Br. Cl B. Mg. Ca. Ba C. S. O. Na D. Al. Si. P

20.Y 元素最高正价与负价的绝对值之差是 4, Y 元素与 M 元素形成离子化合物,并在水中 电离出电子层结构相同的离子,该化合物是()

- B. Na₂S C. Na₂O
- D. K₂S

21.元素 X、Y 可组成化学式为 XY $_3$ 的化合物,则 X、Y 的原子序数可能是()

- A. 3和9 B. 6和8 C. 13和17 D. 11和16

22.在短周期元素中,原子最外电子层只有1个或2个电子的元素是 ()

- A. 金属元素 B. 稀有气体元素 C. 非金属元素 D. 无法确定为哪一类元素
- 23.下列气态氢化物最稳定的是()
- A. NH_3 B. H_2S C. PH_3 D. H_2O

24.下列物的水溶液,碱性最强的是()

- $A \setminus Ba(OH)_2$
- B, $Al(OH)_3$ C, $Fe(OH)_3$ D, $Ca(OH)_2$

25.下列各组化合物中的性质比较,不正确的是()

- A. 酸性: HClO₄>HBrO₄>HIO₄ B. 稳定性: HCl>H₂S>PH₃
- C. 碱性: Ca(OH)₂>Mg(OH)₂ D. 还原性: F⁻> CI⁻> Br⁻

第十四讲 化学反应速率和化学平衡

知识要点梳理:

一、化学反应速率

1. 化学反应速率用来衡量化学反应进行的快慢程度,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示.

单位是 mol/(L•min)或 mol/(L•s)。同一反应,可以选用不同物质的浓度变化表示化学反应速率,表示的都是同一反应在同一时间段内的速率,它们的意义相同,并且数值之比等于这些物质在化学方程式中的化学计量数之比.

注意:并非所有的物质都可以用这种方法表示化学反应速率,固体或纯液体因无浓度变化,所以无法用这种方式表示化学反应速率.

- 2. 影响化学反应速率的因素
- (1) 内因: 反应物的结构和性质是决定化学反应速率的主要因素.
- (2) 外因:对于同一化学反应,如果浓度、气体压强、温度、催化剂等外界条件不同时,反应速率也不相同.

内因是变化的根据,外因是变化的条件,外因通过内因而起作用.改变外因,如浓度、温度、气体压强等反应条件是我们可以控制化学反应以适宜的速率进行的有力措施。

二、化学平衡

- 一定条件下的可逆反应里,正反应速率和逆反应速率相等,反应混合物中各组成成分的百分含量保持不变,这一状态称作化学平衡状态.
- 1. 化学平衡状态的特点可以概括为:逆、等、定、动、变、同.
 - (1) 逆:研究的对象是可逆反应.
 - (2)动:平衡状态是动态平衡,反应达到平衡状态,反应并没有停止.
 - (3)等:平衡时正反应速率和逆反应速率相等,但不等于零.
- (4) 定: 平衡体系中反应混合物各组分的百分含量保持一定, 不再随时间的改变而改变. 同时, 还包括有一定的平衡浓度, 有一定的转化率, 有一定的产率.
 - (5) 变: 外界条件改变, 原平衡被破坏, 建立新的平衡.
- (6) 同: 外界条件相同时, 可逆反应不论从正反应开始, 还是从逆反应开始, 还是正反应和逆反应同时开始, 途径虽然不同, 只要起始浓度相当, 所建立的平衡是等效的, 都可以达到相同的平衡状态.
- 2. 化学平衡的标志
 - (1). 等速标志(第一特征): V == V ;

指反应体系中的同一种物质来表示的正反应速率和逆反应速率相等. 对不同种物质而言, 速率不一定相等.

何谓 "v == v ="? 如何理解?(以 N₂+3H₂ — 2NH₃ 反应为例)

单位时间、单位体积内

- ①若有 1mol N₂消耗,则有 1mol N₂生成
- ②若有 1mol N₂消耗,则有 3mol H₂生成
- ③若有 1mol N₂消耗,则有 2mol NH₃消耗
- ④若有 1mol N≡N 键断裂,则有 6mol N-H 键断裂(其它与上述相似)
 - (2). 百分含量不变标志(第二特征)

正因为 $v_{II}=v_{ii}\neq 0$,所以同一瞬间同一物质的生成量等于消耗量. 总的结果是混合体系中各组成成分的物质的量、质量、物质的量浓度、各成分的百分含量、转化率等不随时间变化而改变.

三、化学平衡

化学平衡状态是指在一定条件下正反应速率与逆反应速率相等的动态平衡状态。这种 平衡是相对的,改变反应的某些条件,可以使正、逆反应发生不同程度的改变(也可能只改 变正、逆反应速率的一种速率),原平衡状态被破坏,一定时间后,在新的条件下又建立新 的平衡状态,这一过程就是**化学平衡的移动。**

	mA(g) + nB(g)	pC(g)+qD(g)+Q(放热),△ng=p+q-(m+n)
条件的	产生的影响	反应速率	化学平衡
	C(反应物) 增大	v' _正 突增后减,v' _逆 渐增,v' _正 >v' _逆	正移
浓	C(反应物)减小	v'ェ突减后增,v'ё渐减,v'ё>v'ェ	逆移
度	C(生成物)增大	v'ё突增后减,v'ェ渐增,v'ё>v'ェ	逆移
	C(生成物)减小	v' _逆 突减后增,v' _正 渐减,v' _正 >v' _逆	正移
	增 大	△ng<0 v'ω、v'ω均突增 v'ω>v'ω	正移
压	压 强	△ng>0 v'ω、v'ω均突增 v'ω <v'ώ< td=""><td>逆移</td></v'ώ<>	逆移
		△ng=0 v'ェ、v' _逆 均突増 v'ェ=v' _逆	不移
311	减小	△ng<0 v' _E 、v' _逆 均突减 v' _E <v'<sub>逆</v'<sub>	逆移
强	压 强	△ng>0 v' _E 、v' _逆 均突减 v' _E >v' _逆	正移
		△ng=0 v'ェ、v'ĕ均突减 v'ェ=v'ĕ	不移
	升 温	v'ī、v'ē均突增 Q>0, v'ī <v'ĕ< td=""><td>逆移</td></v'ĕ<>	逆移
温		v' _E 、v' _逆 均突增 Q<0, v' _E >v' _逆	正移
度	降 温	v' _E 、v' _逆 均突减 Q>0, v' _E >v' _逆	正移
		v'ェ、v'ё均突减 Q<0, v'ェ <v'ё< td=""><td>逆移</td></v'ё<>	逆移
催			
化	催化剂	v'ェ、v'與同等程度增大	不移动
剂			

mA(g) + nB(g) $pC(g) + qD(g) + Q(\hat{p})$, $\triangle ng = p + q - (m+n)$

思考: 若在气体混和物中充入惰性气体,对化学平衡的移动有无影响?

解析: 应分恒温恒压和恒温恒容两种情况进行讨论.

- ① 恒温恒压: 充入惰性气体,密闭容器的体积体积增大,各组分浓度同等程度降低,其效果相当于减小平衡混和物的压强,因此,平衡向反应气体体积增大方向移动。如对合成氨反应来说,则向逆反应方向移动。
- ② 恒温恒容:充入惰性气体,似乎总压强增大了,但实际上容器体积不变,对平衡混和物各组成浓度不变,即原各气体分压不变,增大的惰性气体的分压与平衡体系无关,所以平衡不发生移动. 图象如右上:

注意

- ①以上讨论适合于不与平衡混和物各组分反应的多种气体。
- ②如可逆反应前后气态物质总物质的量不变,则化学平衡不受压强影响,上述恒温恒压、恒温恒容两情况都不会使化学平衡移动.

四、勒沙特列原理

- 1. 定义:如果改变平衡系统的条件之一,如温度、压强或浓度,平衡就向减弱这个改变的方向移动。
- ①影响平衡的因素:浓度、压强、温度三种;

- ②原理的适用范围: 只适用于一项条件发生变化的情况(即温度或压强或一种物质的浓度), 当多项条件同时发生变化时,情况比较复杂:
- ③平衡移动的结果: 只能减弱(不可能抵消)外界条件的变化。
- 2. 平衡移动与转化率的关系: 不要把平衡向正反应方向移动与反应物转化率的增大等同起 来。

若一定温度下,某一恒定容积的密闭容器发生如下反应:

$$aA(g) + bB(g) \iff cC(g) + dD(g),$$

- ①在不改变其他条件时,只增加 A 的量,平衡向正反应方向移动,但是 A 的转化率减小,而 B的转化率增大。
- ②若按原比例同倍数地增加 A 和 B, 平衡向正反应方向移动, 但是反应物的转化率与气体物 质的计量数有关:

如 a+b=c+d,A、B 的转化率都不变;

如 a+ b>c+d, A、B 的转化率都增大;

4. 应用延伸: 勒沙特列原理除了用于典型的可逆反应建立的平衡体系外,也可用于其它的 平衡体系。如溶解平衡、电离及水解平衡、氧化还原平衡等。如①用难挥发酸制易挥发酸 ② 用金属 Na 和 KC1 反应制 K 是利用 K 的沸点低于 Na, 控制合适温度,使 K 成为气体从熔融混 合物中分离出来, 使反应得以进行, 并非是 Na、K 还原性的强弱来决定的。

基础题:

- 1. 将气体 A2和 B2各 1mo1 充入容积为 1L 的容器中反应生成气体 C,反应一段时间后,测得 $c(A_2) = 0.58 \text{mol/L}$, $c(B_2) = 0.16 \text{mol/L}$, c(C) = 0.84 mol/L, 则 C 的化学式为(
- B. A_2B C. AB_2
- D. A_2B_3
- 2. 在体积为 2L 的密闭容器中合成氨,已知在时间 t 内,氨的物质的量增加了 0.6 mol,在 此时间内,用 Ha表示的平均反应速率是 0.45mol/(L•s),则 t是()
 - A. 0.44s
- B. 1s
- C. 1.33s D. 2s
- 3. 在四种不同条件下, 反应 A+B==2C+2D 的反应速率如下, 其中最快的是()
 - A. $V_{(A)}=0.15 \text{ mol} \cdot \text{L}^{-1} \cdot \text{S}^{-1}$
 - B. $V_{(B)} = 0.6 \text{ mo} 1 \cdot \text{L}^{-1} \cdot \text{S}^{-1}$
 - C. $V_{(C)} = 0.4 \text{ mo } 1 \cdot \text{L}^{-1} \cdot \text{S}^{-1}$
- D. $V_{(D)} = 0.45 \text{ mo} 1 \cdot \text{L}^{-1} \cdot \text{S}^{-1}$

- A. 加入少量 W, 逆反应速度增大 B. 升高温度时, 正反应速率增大, 逆反应速率减小
- C. 压强不变, 充入与反应体系不反应的 N₂, 反应速率减小
- D. 体积不变, 充入 N₂, 反应速度减小
- 5. 下列关于化学反应速率的说法中正确的是:
- A. 在反应 2SO₂+O₂ === 2SO₃中,正反应是放热反应,所以升高温度化学反应速率减小
- B. 用铜和稀硝酸反应可以制得 NO 气体, 若改用浓硝酸可加快生成 NO 气体
- C. 在恒温的密闭容器中,反应 $2A(g) \Longrightarrow B(g) + C(g)$ 正在进行时,缩小容器的体积,化学 反应速率加快
- D. 将碳棒和铁片连接, 插入稀硫酸中, 碳棒上有气泡放出, 若改用浓硫酸, 产生气泡的速率 加快。

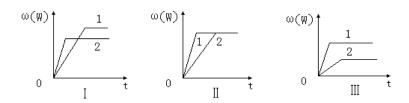
- 6. 在一定温度下的恒容密闭容器中, 当下列哪些物理量不再发生变化时, 表明下述反应: A(g) $+2B(g) \rightleftharpoons C(g) + 2D(g)$ 已达到平衡状态(

 - A. 混合气体的压强 B. 混合气体的密度
 - C. 各气体的物质的量 D. 气体的总物质的量
- 7. 下列方法中可以证明 $A(s) + 2B_2(g) \iff 2C_2(g) + D_2(g)$, 已经达到平衡状态的是
- ①单位时间内生成了 2mo1C2的同时也生成了 1mo1A
- ②一个 B—B 键的断裂的同时有一个 C—C 键的生成
- ③反应速率 $v(B_2) = v(C_2) = \frac{1}{2} v(D_2)$
- $(4)C(B_2):C(C_2):C(D_2) = 2:2:1$
- ⑤温度、体积一定时、 $C(B_2)$ 、 $C(C_2)$ 、 $C(D_2)$ 浓度不再变化
- ⑥、温度、体积一定时,容器内的压强不再变化
- ⑦条件一定时,混合气体的平均相对分子质量不再变化
- ⑧温度、体积一定时,混合气体的密度不再变化
- ⑨百分组成 B₂%=C₂%=D₂%

- A. (1)(5)(6)(7)(8) B. (2)(3)(5) C. (1)(3)(4) D. (1)(2)(3)(4)(5)(6)
- 8. 下列能用勒夏特列原理解释的是()
- A. Fe (SCN) 溶液中加入固体 KSCN 后颜色变深 B. 棕红色 NO2 加压后颜色比原来深
- C. SO₂催化氧化成 SO₃的反应,往往需要使用催化剂
- D. Ho、Io、HI 平衡混和气加压后颜色变深
- 9. 下列叙述中,不能用勒夏特列原理解释的是()
- A. 红棕色的 NO₂,加压后颜色先变深后变浅 B. 高压比常压有利于合成 SO₃的反应
- C. 加入催化剂有利于氨的合成
- D. 工业制取金属钾 Na(1)+KC1(1) —— NaC1(1)+K(g)选取适宜的温度, 使 K 成蒸气从 反应混合物中分离出来

提高题:

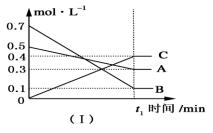
- 10. 下列说法正确的是()
- A. 可逆反应的特征是正反应速率总是和逆反应速率相等
- B. 在其他条件不变时, 使用催化剂只能改变反应速率, 而不能改变化学平衡状态
- C. 在其他条件不变时,升高温度可以使化学平衡向放热反应的方向移动
- D. 在其他条件不变时,增大压强一定会破坏气体反应的平衡状态
- 11. 某温度下,反应 $H_2(g)+I_2(g)$ \Longrightarrow 2HI (g),正反应为放热反应,在带有活塞的密闭容器 中达到平衡。下列说法中正确的是()
- A. 体积不变,升温,正反应速率减小
- B. 温度、压强均不变, 充入 HI 气体, 开始时正反应速率增大
- C. 温度不变, 压缩气体的体积, 平衡不移动, 气体颜色加深
- D. 体积、温度不变, 充入氮气后, 正反应速率将增大
- 12. 在 4 L 密闭容器中充入 6 mol A 气体和 5 mol B 气体,在一定条件下发生反应: 3A(g)+B(g)

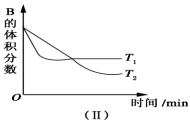

 \mathbb{Z} \mathbb{Z} 下列判断正确的是()

- A. X=3 B. A 的转化率为 50% C. 平衡时 B 的浓度为 1.5 mol L⁻¹
- D. 达到平衡时, 在相同温度下容器内混合气体的压强是反应前的 95%
- 13. 等物质的量的 X(g) 与 Y(g) 在密闭容器中进行可逆反应:

 $X(g) + Y(g) \Longrightarrow 2Z(g) + W(s) + Q$,下列叙述正确的是()

- A. 平衡常数 K值越大,X 的转化率越大 B. 达到平衡时,反应速率 $v_{\mathbb{H}}(X) = 2v_{\mathbb{H}}(Z)$
- C. 达到平衡后,降低温度,正向反应速率减小的倍数大于逆向反应速率减小的倍数
- D. 达到平衡后, 升高温度或增大压强都有利于该反应平衡向逆反应方向移动
- 14. 在下列平衡体系中,保持温度一定时,改变某物质的浓度,混合气体的颜色会改变;改 变压强时,颜色也会改变,但平衡并不移动,这个反应是()

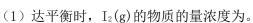

 - A. $2NO + O_2 \implies 2NO_2$ B. $Br_2(g) + H_2 \implies 2HBr$
 - C. $N_2O_4 \rightleftharpoons 2NO_2$
- D. $6N0+4NH_3 = 5N_2+3H_20$
- 15. 一定条件下,将 10mo1 H₂和 1mo1 N₂充入一密闭容器中,发生反应: N₂(g) +3H₂(g) ==== 2NH₃(g), 达到平衡时, H₂的转化率可能是()
 - A. 25%
- B. 30% C. 35% D. 75%
- 16. 在一密闭容器中有如下反应: aX(g)+bY(g) ⇌ nW(g)。某化学兴趣小组的同学根据此 反应在不同条件下的实验数据,作出了如下曲线图:



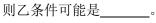
- 其中, ω(W)表示 W 在反应混合物中的百分含量, t 表示反应时间。其它条件不变时, 下列 分析正确的组合是()
 - ①. 图 I 可能是不同压强对反应的影响,且 $P_2 > P_1$, a+b < n
 - ②. $Q = T_1 > T_2$, $Q + T_3 > T_4$
 - ③. 图 II 可能是不同压强对反应的影响,且 $P_1 > P_2$, n=a+b
 - ④. 图Ⅱ可能是在同温同压下催化剂对反应的影响,且1使用的催化剂效果好
 - A. (1)(2)
- B. (1)(2)(3) C. (1)(2)(4)
- D. (1)(3)(4)

拓展题

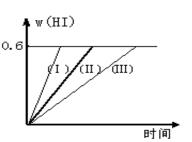
17. TC时, A 气体与 B 气体反应生成 C 气体,反应过程中 A、B、C 浓度变化如图 (I) 所示, 若保持其他条件不变,温度分别为 T_1 和 T_2 时,B 的体积分数与时间的关系如图(II)所示。



根据以上条件,回答下列问题:


- (1) A 与 B 反应生成 C 的化学方程式为_____(填 "吸热"或"放热")反应。
- (2) t₁min 后,改变下列某一条件,能使平衡向逆反应方向移动的有_____(填字母编号)。
 - A. 保持其他条件不变, 增大压强
 - B. 保持容器总体积不变, 通入少量稀有气体
 - C. 保持其他条件不变, 升高温度
- 18. 将 1 mol $I_2(g)$ 和 2 mol I_2 置于 2L 密闭容器中,在一定温度下发生反应:

 $I_2(g) + H_2(g)$ \Longrightarrow 2HI(g); Q大于 0, 并达平衡。HI 的体积分数 w(HI) 随时间变化如图曲线(II) 所示:


(2)若改变反应条件,在甲条件下 w(HI)的变化如曲线(I) 所示, 在7条件下 w(HI)的变化加曲线(III) 所示。则用条件可能

在乙条件下w(HI)的变化如曲线(III)所示。则甲条件可能____,

(填入下列条件的序号)

- ①恒容条件下,升高温度;②恒容条件下,降低温度;
- ③恒温条件下,缩小反应容器体积;④恒温条件下,扩大反应容器体积;
- ⑤恒温恒容条件下,加入适当催化剂。

第十六讲 氧化还原

【知识梳理】

- 一. 有关概念:
- 1. 什么叫"氧化"什么叫"还原"
- 2. 氧化—还原反应的实质是什么?
- 3. 什么叫氧化剂? 常见的氧化剂有哪些?

氧化剂必须具备夺电子的能力,得电子的物质叫氧化剂。常见的氧化剂有:

- (1) 活泼的非金属单质,例: F₂、Cl₂ Br₂ I₂
- (2) 含高价元素的含氧化合物,例: KMnO₄ K₂Cr₂O₇ KNO₃ NH₄NO₃ KClO₃
- (3) 酸根有氧化性的含氧酸,例: HNO3 浓 H₂SO₄ HClO HClO₃ HMnO₄
 - (4) 含有不活泼金属高价阳离子的化合物例: Fe^{3+} Ag^{+} Hg^{2+} Cu^{2+} Sn^{4+}
- 4. 什么叫还原剂? 常见的还原剂有哪些?

还原剂必须具备失去电子的能力,失电子物质叫还原剂。常见的还原剂有:

- (1) 活泼金属,例:Na Mg Al Zn Fe
- (2) 含低价元素的化合物,例: NH_3 H_2S HI
- (3) 某些低价态的氧化物,例:CO SO₂ NO N₂O
- (4) 某些低价含氧酸及其盐,例: H₂SO₃ Na₂SO₃
- (5) 某些低价金属阳离子,例: Fe²⁺ Cu⁺ Sn²⁺
- (6) 某些非金属单质:例 C
- 5. 什么是氧化产物和还原产物?
- 二、氧化还原反应的配平及简单计算

方法:

- 1、判断各元素的化合价 2、列出有化合价变化的元素
- 二. 3、求得失电子的最小公倍数
- 4、配平有电子得失的元素的原子

- 5、配平无电子得失的元素的原子或原子团
- 6、配平氢(原子),用氧(原子)来复核

原则:

遵循实验事实遵循质量守恒得失电子守恒

【例题解析】

例1. 一、配平下列反应方程式,指出氧化剂、还原剂、氧化产物、还原产物,标出电子转 移方向及数目

(1) 氧化还原反应发生在两种元素之间

 $__FeSO_4+__KMnO_4+__H_2SO_4 \rightarrow Fe_2(SO_4)_3+__MnSO_4+__K_2SO_4+__H_2O_4$

(2) 氧化还原反应发生在两种元素之间

 N_2O_4+ $N_2H_4 \rightarrow N_2+$ H_2O

(3) 氧化还原反应发生在多种元素之间

 $\underline{\text{Cu}_2S} + \underline{\text{HNO}_3} \rightarrow \underline{\text{Cu}} (NO_3)_2 + \underline{\text{NO}} + \underline{\text{H}_2SO_4} + \underline{\text{H}_2O}$

(4) 氧化还原离子方程式配平

 $_SO_3^{2^-} + _MnO_4^- + _H^+ \rightarrow _Mn^{2+} + _SO_4^{2^-} + _H_2O$

(5) 氧化还原反应方程式的缺项配平

 $_$ Na₂Cr₂O₇+ $_$ KI+HCl \rightarrow CrCl₃+ $_$ NaCl+ $_$ KCl+ $_$ l₂+ $_$

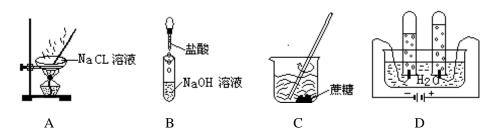
例 2. NH_4NO_3 — $HNO_3+N_2+H_2O_1$,在反应中被氧化与被还原的氮原子数之比为()。

- A. 5:3 B. 5:4 C. 1:1 D. 3:5

例 3. 根据下列反应判断有关物质还原性由强到弱的顺序是(

 $H_2SO_3+I_2+2H_2O\rightarrow 2HI+H_2SO_4$ $2\text{FeCl}_3+2\text{HI} \rightarrow 2\text{FeCl}_2+2\text{HCl}+\text{I}_2$

 $3FeCl_2+4HNO_3\rightarrow 2FeCl_3+NO\uparrow +2H_2O+Fe(NO_3)_3$


- A. $H_2SO_3 > I^- > Fe^{2+} > NO$ B. $I^- > Fe^{2+} > H_2SO_3 > NO$
- C. $Fe^{2+}>I^{-}>H_2SO_3>NO$ D. $NO>Fe^{2+}>H_2SO_3>I^{-}$

例 4. 如果分别用等物质的量的这些物质氧化足量的 KI,得到 I_2 最多的是(

A. Fe^{3+} B. MnO_4^- C. Cl_2 D. HNO_2

基础题:

1.下列操作过程中一定有氧化还原反应发生的是

2. 成语是中华民族灿烂文化中的瑰宝,许多成语中蕴含着丰富的化学原理,下列成语中涉 及氧化还原反应的是

A.木已成舟

- B.铁杵成针
- C.蜡炬成灰
- D.滴水成冰
- 3. X 原子转移 2 个电子给 Y 原子, 形成化合物 XY, 下列说法中正确的是
- A.X 被氧化了 B.X 是氧化剂 C.X 发生了还原反应 D.Y 在反应中表现出还原性
- 4. 下列四种基本反应类型中,一定是氧化还原反应的是

A.化合反应

- B.分解反应 C.复分解反应 D.置换反应

5.下表各组变化中,后者一定包括前者的是

A	化学变化	物理变化	С	氧化还原反应	化合反应
В	氧化还原反应	分解反应	D	中和反应	复分解反应

- 6. 判断一个化学反应是否属于氧化还原反应的方法是

 - A.观察是否发生了化合反应 B.观察是否有氧气参加反应

 - C.观察是否有单质参加反应 D.观察反应前后是否有元素的化合价发生变化
- 7. 请你运用所学的化学知识判断下列有关化学观念的叙述中错误的是
 - A.几千万年前地球上某条恐龙体内的某种原子可能在你的身体里
 - B.用斧头将木块一劈为二,在这个过程中个别分子恰好分成原子

 - C.一定条件下, 石墨可以变成金刚石 D.一定条件下, 水能在 2℃时结冰
- 8. 已知 N 元素的最低化合价是 -3 价,最高化合价是+5 价,那么下列物质中的 N 元素只具

有氧化性的是

A.NH₃ B.N₂ C.NO₂ D.HNO₃

9. 下列各反应中,水作为还原剂的是

A.2H2+O2 <u>点燃</u> 2H2O

 $B.SO_3+H_2O===H_2SO_4$

 $C.2F_2+2H2O===4HF+O_2$

 $D.2Na+2H_2O===2NaOH+H_2$

10. 下列药品置于空气中很容易变质(括号内的物质是变质后的物质),其中不是因为氧化 还原反应而变质的是

 $A.Na_2SO_3 \ (Na_2SO_4) \qquad B.FeCl_2 \ (FeCl_3) \qquad C.KI \ (I_2) \qquad D.NaOH \ (Na_2CO_3)$

11. 下列反应中,氧化反应与还原反应在同一种元素中进行的是

A.Zn+H₂SO₄===ZnSO₄+H₂

 $B.2FeCl_2+Cl_2==2FeCl_3$

C.2KClO₃ $\frac{\text{Mn } O_2}{\triangle}$ 2KCL+3O₂

 $D.Cl_2+H_2O===HClO+HCl$

12. 下列关于氧化还原反应的叙述中正确的是

A.失去电子的反应为还原反应

B.含有氧元素的物质是氧化剂

C.氧化剂得到电子的数目和还原剂失去的电子的数目一定相等

D.氧化剂和还原剂不可能是同一种物质

13. 从元素化合价变化分析,下列变化中必须加入氧化剂才能发生的是(不考虑分解反应)

 $A.SO_2 \longrightarrow S$ $B.Na_2SO_3 \longrightarrow SO_2$ $C.I^- \longrightarrow I_2$ $D.HCO_3^- \longrightarrow CO_3^{2-}$

14. 某金属元素由氧化物转变为单质,则该金属元素

A.一定被氧化

B.一定被还原

C.可能被氧化,也可能被还原 D.既不被氧化,也不被还原

15. 已知 X、Y 中含有相同的元素, Z、W 中也含有相同的元素, 根据反应 X+H₂O → $Y+H_2$; $Z+H_2O$ → $W+O_2$ (方程式均未配平),可推断 $X \times Y$ 中及 $Z \times W$ 中相同元素的 化合价的高低顺序为

A. X > Y, Z > W B. X < Y, Z < W C. X > Y, Z < < W D. X < Y, Z > W

16. 对于反应: 2H₂S+SO₂→3S+2H₂O,被氧化的硫原子与被还原的硫原子的质量比为

A. 1: 1 B. 2: 1 C. 3: 1 D. 1: 2

提高题:

17. 下列叙述正确的是

A、还原含某元素的化合物一定得到该元素的单质

	D、含有最高价元素的化合物一定具有强氧化性
18.	LiH 是一种氢气发生剂,用于军事或其他需氢气的场合。反应为: LiH+ H_2O =LiOH+ $H_2\uparrow$
	在这个反应中 ()
	A. 水是氧化剂, LiH 是还原性 B. LiH 是氧化剂, 水是还原剂
	C. LiH 既是氧化剂又是还原剂 D. 该反应转移的电子数为 2
19.	某溶液中的 Cl-和 I-的物质的量浓度相等,为了氧化 I-而不使 Cl-被氧化,根据下列
	反应可选用的氧化剂是
	$2MnO_4^- + 10Cl^- + 16H^+ = 2Mn^{2+} + 5Cl_2 \uparrow + 8H_2O$
	$2Fe^{3+} + 2I^{-} = 2Fe^{2+} + I_2 2Fe^{2+} + Cl_2 = 2Fe^{3+} + 2Cl^{-}$
	A、FeCl ₂ B、氯气 C、KMnO ₄ D、FeCl ₃
20.	己知铋酸钠(NaBiO ₃)在酸性条件下可以将 Mn ²⁺ 氧化成 MnO ₄ ,则下列溶液中不能用于
	酸化铋酸钠溶液的是
	A、HNO ₃ B、NaHSO ₄ C、HCl D、H ₂ SO ₄
21.	燃料电池是利用燃料(如 H_2 、 CO 、 CH_4 等)跟氧气或空气反应,将化学能转化成电能的
	装置,电解质是强碱溶液。下面关于甲烷燃料电池的说法正确的是
	A、负极反应为 $O_2 + 2H_2O + 4e = 4OH^-$
	B、负极反应为 CH ₄ + 10OH ⁻ -8e = CO ₃ ²⁻ + 7H ₂ O
	C、放电时溶液中的阴离子向负极移动; D 、随放电的进行,溶液的 pH 值不变。
22.	镍—镉可充电电池,电极材料是 Cd 和 $NiO(OH)$,电解质是 KOH ,电极反应是: $Cd+2OH$
	$-2e = Cd(OH)_2$, $2NiO(OH) + 2H_2O + 2e = 2Ni(OH)_2 + 2OH$ 。下列说法不正确的是
	A、电池放电时,电池负极周围溶液的 pH 不断增大
	B、电池的总反应式是: $Cd + 2NiO(OH) + 2H_2O = Cd(OH)_2 + 2Ni(OH)_2$
	C、电池充电时,镉元素被还原 D、电池充电时,电池正极和电源的正极连接
23.	把 $3.6g$ 铜粉放入 $100mL 4mol \cdot L^{-1}$ 硝酸溶液中,反应完全后被还原的硝酸的质量是
	A, 7.2g B, 10.8g C, 6.3g D, 2.4g
24.	用 Pt 电极电解 KCl 和 CuSO ₄ 的混合溶液,当电路中通过 0.4mol 电子的电量时,阴阳两
	极都产生 0.14mol 的气体, 若电解后溶液体积为 40L, 则电解后溶液的 pH 为
	A、1 B、2 C、7 D、11
25.	用石墨作电极电解 100 mL H ₂ SO ₄ 和 CuSO ₄ 的混合液,通电一段时间后,两极均收集到
	2.24 L 气体(标准状况),则原混合液中 Cu ²⁺ 的物质的量浓度为 ()
	A. $1 \text{mol} \cdot L^{-1}$ B. $2 \text{mol} \cdot L^{-1}$ C. $0.1 \text{mol} \cdot L^{-1}$ D. $0.2 \text{mol} \cdot L^{-1}$
26.	某金属的硝酸盐受热分解时,生成 NO ₂ 和 O ₂ 的物质的量之比为 3:1,则在分解过程中
	金属元素的化合价是 ()
	A. 升高 B. 降低 C. 不变 D. 无法确定
27.	高铁酸钾 (K_2FeO_4) 是一种新型、高效、多功能水处理剂,是比 Cl_2 、 O_3 、 ClO_2 、 $KMnO_4$

B、失电子越多, 该物质的还原性就越强

C、阳离子也可能失去电子被氧化,可能做还原剂

氧化性更强,无二次污染的绿色水处理剂。工业是先制得高铁酸钠,然后在低温下,在 高铁酸钠溶液中加入 KOH 至饱和就可析出高铁酸钾(K_2FeO_4)。 湿法制备的主要反应方程为: 2Fe(OH)₃ +3ClO +4OH =2FeO₄²⁻ +2Cl +5H₂O , 干法制备的主要反应方程为: 2FeSO₄ +6Na₂O₂ = 2Na₂FeO₄ +2Na₂O +2Na₂SO₄ +O₂↑ 下列有关说法不正确的是: A. 高铁酸钾中铁显+8 价 B. 湿法中每生成 1mol Na₂FeO₄ 转移 6mol 电子 C. 干法中每生成 1mol Na₂FeO₄ 转移 4mol 电子 D. K_2 FeO₄处理水时,不仅能消毒杀菌,还能除去水体中的 H_2 S、 NH_3 等,生成的 $Fe(OH)_3$ 胶体还能吸附水中的悬浮杂质 28. 在热的稀硫酸中溶解了 15.2g FeSO₄。当加入 50mL 0.5mol/L 的 KNO₃溶液后,使其中 的 Fe²⁺全部转化成 Fe³⁺, KNO₃ 溶液也完全反应,并有 N_xO_y 气体逸出,则 N_xO_y 是 A, N_2O B, NO C, N_2O_3 D, NO_2 29. 硫代硫酸钠可作为脱氯剂,已知 25.0mL0.100mol/L Na₂S₂O₃ 溶液恰好把 224mL (标准状 况下) Cl_2 完全转化为 Cl^- 离子,则 $S_2O_3^{2-}$ 将转化成 $A_{s} S^{2^{-}} B_{s} S C_{s} SO_{3}^{2^{-}} D_{s} SO_{4}^{2^{-}}$ 30. Cu₂S 与一定浓度的 HNO₃ 反应, 生成 Cu(NO₃)₂ 、CuSO₄ 、NO₂ 、NO 和 H₂O, 当 NO₂ 和 NO 的物质的量之比为 2:1 时,实际参加反应的 Cu₂S 与 HNO₃ 的物质的量之比 为 31. 某温度下,将 Cl₂通入 NaOH 溶液中,反应得到 NaCl、NaClO、NaClO₃的混合液,经 测定 CIO-与 CIO3-的浓度之比为 1:2,则 Cl2与 NaOH 溶液反应时被还原的氯元素与被 氧化的氯元素的物质的量之比为_____;参加反应的 NaOH 与 Cl2 的物质的量之比 为。 32. 在 1L 含等物质的量的 HBr 和 H₂SO₃ 的溶液里通入 0.09molCl₂, 有 1/4Br被氧化(已知 Br₂能氧化 H₂SO₃)。原溶液中 HBr 和 H₂SO₃的浓度都等于 拓展题 33. 完成并配平下列反应方程式 (1) $Fe^{2+} + MnO_4^- + H^+$ — (2) $Cl^{-} + Cr_2O_7^{2-} + H^{+}$ 34. (1) 请将 5 种物质: N₂O 、FeSO₄、Fe (NO₃)₃、HNO₃、Fe₂ (SO₄)₃分别填入下面

- 对应的横线上,组成一个未配平的化学方程式。

- (2) 反应物中发生氧化反应的物质是_____;被还原的元素是____。
- (3) 反应中 1 mol 氧化剂 _____ (填"得到"或"失去") _____mol 电子
- (4) 将该方程式写成离子方程式再配平

35、现有①KMnO4 ②H2 ③O2 ④Cl2 ⑤CO ⑥Al 六种物质,从氧化性、还原性的角

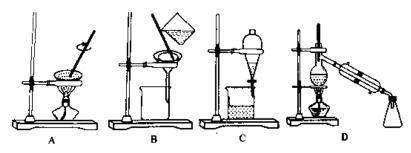
度分类,若将常用的氧化剂放入甲: ➡ 中,常用的还原剂放入乙: ➡ 中,则:
(1)甲中有 ; 乙中有 。 (填序号)
"乙",下同)中找物质,欲实现Ⅱ反应过程应从 中找物质。
(3)请将 4 种物质: Fe、 Fe_2O_3 、 CO 、 CO_2 分别填入下面对应的横线上,组成一个配平了的化
学方程式,并标出电子转移的方向和数目。
+ + +
(4)一氧化氮是工业制硝酸的中间产物,生成一氧化氮的化学方程式为:
_ 催化剂
$4X+5O_2$ 高温、高压 $4NO+6H_2O$,则根据质量守恒定律可以推出 X 的化学式为。

第十七讲 综合复习一(有机)

【知识梳理】

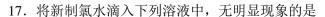
烃的分类及结构、性质等的比较

	人。						
比较	分类	烷烃	烯烃	炔烃	苯及其同系物		
	通式						
结	构特点	①含 C—C 单键 ②链烃	①含一个键 ②链烃	①含一个键 ②链烃	①含一个②侧链为烷烃基		
同	分异构	只有碳链异构	①碳链异构 ②C=C 位置异构	①碳链异构 ②C C位置异构	铡链大小及相对 位置产生的异构		
	分子式						
	结构式						
代	结构简式						
表	电子式						
物	空间构型						
	键角						


	一般随着分			
	碳原子数	[相同时,支链越多,	沸点越低。	简单同系物
物理性质	液态时密度	增大,气态时碳原子	数一般为1~4。	常温下为液态,不
1771年次		不溶于水。		溶于水,密度比水
		液态烃密度比水小	٠,٥	小。
分类比较	烷烃	烯烃	炔烃	苯及其同系物
项目				
	①与卤素发生	①与卤素、H ₂ 、	①与卤素、H ₂ 等	①与卤素、浓硝酸
	反应(特征反应)	H ₂ O	发生	等
	a.反应条件	等发生反	反 应	发生反
	b.要求卤素是	应	(特征	应
	(纯卤素、卤素水	(特征反应)	反应)	$+ Br_2 \rightarrow$
	溶液/四氯化碳	$CH_2=CH_2$ +	CH CH +	
	溶液)	$Br_2 \rightarrow$	$2Br_2 \rightarrow$	要求卤素是
主要化学	c.例: CH ₄ + Cl ₂			(纯卤素、卤素
性质	\rightarrow	要求卤素是	要求卤素是	水溶液/四氯化
		(纯卤素、卤素水	(纯卤素、卤素水	碳溶液)
	②氧化反应: 燃烧	溶液/四氯化碳	溶液/四氯化碳	$+ HNO_3 \rightarrow$
	如 :C _n H _{2n+2} +	溶液)	溶液)	
	$O_2 \rightarrow$	$CH_2=CH_2+H_2\rightarrow$	CH CH +	②与 H ₂ 发生
			$2H_2 \rightarrow$	反应
		CH ₂ =CH ₂ +		$+ H_2 \rightarrow$
	(注:写反应式均要	$H_2O \rightarrow$	②氧化反应	
	注明		a.燃烧	③氧化反应:
		①试剂:	①试剂:	
代表物的		②反应:	②反应:	
实				
验室制法		③装置类型:	③装置类型:	
		④收集方法:	④收集方法:	

【课后作业】

- 一、选择题(本题共40分,每小题2分,每小题只有一个正确答案)
- 1. 自然界中能以游离态存在的元素是
 - A. 硫
- B. 氯
- C. 铝 D. 镁


2. 下列单质活泼性最强的是

- A. N₂ B. Cl₂ C. Br₂ D. I₂
 3. 钼可用于制导导弹,钼的同位素 ⁹⁴Mo 所含的中子数是
 A. 42 B. 47 C. 52 D. 94
 4. 下列化合物属于强电解质的是
 A. NaOH B. CH₃COOH C. H₂O D. CO₂
- 5. 能使淀粉溶液显蓝色的物质是
- A. KI B. I_2 C. KIO_3 D. HI
- 6. 不属于石油分馏产品的是
- A. 石蜡 B. 天然气 C. 汽油 D. 沥青
- 7. 不能用浓硫酸干燥的气体是
- A. NH₃ B. SO₂ C. Cl₂ D. HCl
- 8. 与二氧化硫反应时,下列物质作还原剂的是
- A. 溴 B. 硫化氢 C. 品红 D. 氢氧化钙
- 9. 下列变化会放出热量的是
- A. 碘升华 B. 冰融化 C. 氯化铵溶于水 D. 氢氧化钠溶于水
- 10. 分离苯和水,应选用的装置是

- 11. 25℃时, 0.01mol/L 氢氧化钠溶液的 pH 是
 - A. 2 B. 5 C. 9 D. 12
- 12. 在密闭容器中发生反应 $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$, $0 \sim 5min$ 内 H_2 的浓度减少了 0.1mol/L,则在这段时间内用 HI 表示的平均反应速率[$mol/(L \cdot min)$]为
- A. 0.01 B. 0.04 C. 0.2 D. 0.5
- 13. 关于右图所示原电池的说法正确是
 - A. 锌电极是正电极
 - B. 锌电极得到电子
 - C. 铜电极上有氢气产生
 - D. 铜电极上发生氧化反应
- 14. 存在大量 H+、Br⁻和 Ca²⁺的溶液中还能大量存在
- 4. 行任八里 H、 BI 和 Ca 的指放下足比八里行任
- A. OH^{-} B. Ag^{+} C. $CO_{3}^{2^{-}}$ D. NO_{3}^{-}
- 15. 能用离子方程式 Ba²⁺+SO₄²⁻→BaSO₄ ↓ 表示的是
 - A. 氯化钡和硫酸钠溶液反应 B. 碳酸钡和稀硫酸反应
 - C. 氢氧化钡和硫酸铝溶液反应 D. 氢氧化钡和稀硫酸反应

- 16. 右图是 H₂和 Cl₂反应生成 HCl 的能量变化示意图,由图可知
 - A. 反应物的能量总和小于生成物的能量
 - B. 生成 1molHCl(g)需吸收 92.3KJ 的能量
 - C. $H_2(g) + Cl_2(g) \rightarrow 2HCl(g) + 184.6KJ$
 - D. $H_2(g) + Cl_2(g) \rightarrow 2HCl(g) + Q \quad (Q > 184.6KJ)$

- B. 甲基橙
- C. 硝酸银 D. 硫酸钠
- 18. 一定温度下的密闭容器中发生可逆反应 $C(s) + H_2O(g) \Longrightarrow CO(g) + H_2(g)$,一定能说明该反应已达到平衡状态的是
 - A. $V \not\cong (H_2O)=V \not\equiv (CO)$

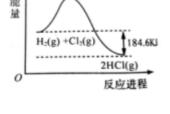
B. 容器中物质的总质量不发生变化

C. $n(H_2O)$: $n(H_2)=1$: 1

- D. 生成 1molCO 的同时生成 1molH₂
- 19. 用镁和稀硫酸反应测定常温下 1mol 氢气的体积,下列叙述错误的是
 - A. 反应开始前,检查装置的气密性
 - B. 加入过量稀硫酸,以确保镁带完全反应
 - C. 反应停止后, 立即调压并记录读数
 - D. 常温下 1mol 氢气的体积为 $\frac{V(H_2)}{m(Mg)} \times M(Mg)$
- 20. 某硫酸铵样品中混有硫酸氢铵。称取不同质量的样品分别于 100mL 2.300mol/L 的氢氧化钠溶液充分反应,得到的实验数据入下表:

实验序号	I	II
样品质量(g)	14.35	28.70
氨气质量 (g)	3.570	3.570

下列说法错误的是


- A. 实验 I 中氢氧化钠一定过量
- B. 样品中硫酸铵与硫酸氢铵的物质的量之比为 9:1
- C. 要使实验 II 的样品完全反应,需要再加入氢氧化钠 0.2100mol
- D. 样品中氮元素的质量分数是 20.49%

二、(本题共24分)

- 21. 联氨(N_2H_4)是火箭发射的重要燃料,它与二氧化氮反应生成氨气和水。 完成下列填空:
- (1) 氮分子的电子式为,与氮同主族的短周期元素的原子结构示意图是。
- (2) 氢、氮、氧原子半径由小到大的顺序为(用元素符号表示);

写出一种由氢、氮、氧三种元素组成的离子化合物的化学式。

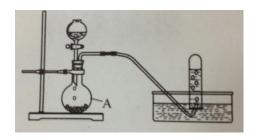
- (3) 氧、硫的非金属性强弱可通过比较这两种元素(选填编号)
 - a. 原子的得电子的能力
- b. 含氧酸的酸性

- c. 气态氢化物的稳定性 d. 单质的熔沸点
- 22. 氮化硅(Si3N4)陶瓷材料可应用于原子反应堆。氮化硅可由下列反应制得:

$$3SiO_2 + 6C+ 2N_2$$
 高温 $S_{i3}N_4 + 6CO$

 $S_{i3}N_4$ 中氮元素的化合价为一3。

完成下列填空:


- (1) 标出上述反应中电子转移的方向和数目。
- (2) 该反应的氧化剂是,被氧化的元素是。
- (3) 若生成 0.25mol S_{i3}N₄,则反应过程中转移个电子。
- 23. 铁、铝在生产生活中有广泛的应用。

完成下列填空:

- (1) 铝用作电线是利用了铝的性;铁用作炊具是利用了铁的性。
- (2) 常温下由于浓硫酸能使铁,因此浓硫酸可用铁槽车运输。
- (3) 氢氧化铝既能跟盐酸反应又能跟氢氧化钠溶液反应,由此可知氢氧化铝是物质。 氢氧化铝和盐酸反应的离子方程式为。
- 24. 勒夏特列原理在生产生活中有许多重要应用。 完成下列填空:
- (1) 实验室配置 FeCl₃溶液时,将 FeCl₃溶解在盐酸中,目的是防止。
- (2) 石蕊 (用 HZ 表示) 试液中存在的电离平衡 HZ (红色) \rightleftharpoons H++Z (蓝色)。在 中性溶液中。石蕊试液呈色;要使石蕊试液呈红色,可加入。
- (3) 工业制硫酸时,为使 SO₂尽可能多地转化成 SO₃,采取的措施是。
- (4) 合成氨工业采取的以下措施中,可以用勒夏特列原理解释的是(选填编号)。
 - a. 升温至 500℃左右
- b. 使用催化剂
- c. 加压至 20~50MPa
- d. 将氨及时液化分离

三、(本题共15分)

25. 实验室以电石(主要成分是 CaC₂)为原理制备乙炔,装置如下图所示。

完成下列填空:

- (1) 仪器 A 的名称是。
- (2) 实验室制取乙炔的化学方程式为
- (3) 为避免电石和水反应过于激烈,除用饱和食盐水代替水外,还需采取的措施是。
- (4) 为除去乙炔中混有的少量硫化氢杂质,可将气体通过(选填编号)。
 - a. 酸性 KMnO₄溶液 b. CCl₄
- c.NaOH 溶液

- (5) 氧炔焰是乙炔在氧气中燃烧产生的高温火焰,可用于
- 26. 烧碱是重要的化工原料,工业烧碱中可能含有少量 NaCl。

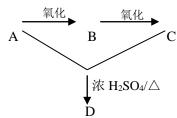
完成下列填空:

- (1) 电解饱和食盐水的化学方程式为。
- (2) 检验工业烧碱中是否含有 NaCl 杂质的方法是: 取样,加水溶解,加入酸化,再滴入 溶液,若有白色沉淀生成,则说明含有 NaCl。
- (3) 为测定工业烧碱中样品中 NaOH 的质量分数, 进行如下实验:

称取 1.000g 样品, 配制成 250mL 待测液。量取 20.00mL 待测液, 用 0.100mol/L 标准盐酸 溶液滴定,消耗盐酸 19.20mL。

配制待测液所需的定量仪器有电子天平和

样品中 NaOH 的质量分数为。


若测得的 NaOH 质量分数偏低,可能的原因是(选填编号)。

- a. 配制待测液时, 转移过程中未洗涤烧杯
- b. 锥形瓶用蒸馏水洗涤后,再用待测液润洗
- c. 盛放标准盐酸溶液的滴定管未用标准液润洗
- d. 滴定时, 锥形瓶摇晃太剧烈, 有少量液体溅出

四、(本题共11分)

- 27. 乙烯是重要的有机化工原料。完成下列填空:
- (1) 实验室中, 乙烯可由脱水制得; 乙烯能发生加成、氧化、还原和反应。
- (2) 与乙烯催化加氢得到的产物互为同系物的是(选填编号)。

- a. C_2H_6 b. C_3H_6 c. C_3H_8 d. C_4H_8
- (3) 若要鉴别乙烷和乙烯,可将它们分别通入,观察到现象的为乙烯。
- 为烃的衍生物,它们之间的转化关系如下图所示: 28. A、B、C、D均

A 俗称酒精: C 的分子式为 $C_2H_4O_2$ 。

完成下列填空:

(1) 写出由 A 转化为 B 的化学方程式。______

检验 B 的试剂为。_____

- (2) C中的官能团是_____
- (3)D 的结构简式为______; D 与 CH₃CH₂COOH 互为_____

五、(本题共10分)

29. 亚硫酸钠是常用的漂白剂和防腐剂,可通过下列反应制备:

SO₂+NaOH→NaHSO₃ 2NaHSO₃+Na₂CO₃→2Na₂SO₃+CO₂ ↑ +H₂O 完成下列计算:

- (1) 200mL1.00mol/LNaOH 溶液含 NaOHmol。
- (2) 11.2L(标准状况)SO₂与 NaOH 溶液反应,最多可生成 NaHSO₃mol。
- (3) SO₂ 通入 NaOH 溶液中也可能发生反应 SO₂+2NaOH→Na₂SO₃+ +H₂O。将一定量 SO₂ 通入含有 6molNaOH 的溶液,完全反应后,再加入过量 Na₂CO₃,加热放出 2molCO₂,计算生成 Na₂SO₃ 的质量(写出计算过程)。

		第-	十八讲 综合》	复え	7二(无机)		
_	、选择题(共80分,每	季小	题 2 分,每小题只	有1	个正确答案)		
1.	调味品食醋中含有30	% —	5%的				
	A. 甲醇	В.	乙醇	C.	乙醛	D.	乙酸
2.	聚氯乙烯制品随处可	见,	但聚氯乙烯塑料不	用	于生产		
	A. 食品保鲜袋	В.	衣物包装袋	C.	垃圾桶	D.	雨披
3.	能使酸性高锰酸钾溶	液剂	退的是				
	A. 乙烷	В.	乙炔	C.	乙酸	D.	苯
4.	下列关于苯的叙述的	是					
	A. 属于不饱和烃			В.	难溶于水且比水车	줖	
	C. 分子中含有碳碳>			D.	不能使溴的四氯	化碳:	溶液褪色
5.	CH ₃ CH CH ₂ CH ₃ I 的命名 CH ₂ CH ₃	古正	确的是				
	A. 2-乙基丁烷	В.	3-甲基戊烷	C.	2-乙基己烷	D.	3-甲基己烷
6.	合金是常用的材料。	下歹]产品不属于合金制	引品自	的是		
	A. 铁锅	В.	金属门窗	C.	不锈钢餐具	D.	水银温度计
7.	7. 铀-235(²³⁵ ₉₂ U)是常用的核材料, ²³⁵ ₉₂ U 核外电子数为						
	A. 327	В.	235	C.	143	D.	92
8.	易形成简单阴离子的	元素	是				
	A. O	В.	Mg	C.	Na	D.	Не
9.	原子核外L电子层最	多自					
	A. 4	В.	6	C.	8	D.	10

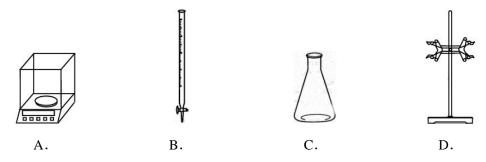
10. 下列物质属于电解质	质的是		
A. Cl ₂	B. KNO ₃	C. SO ₂	D. Al
11. 二氧化碳的化学用语	吾错误的是		
A. 电子式: Ö::C::Ö		B. 分子式: CO ₂	
C. 结构式: C=O=C	О	D. 比例模型:	
12. 氯化钠晶体熔化的运	过程中,破坏了		
A. 离子键和金属键	B. 离子键	C. 共价键和离子键	D. 共价键
13. 常温下,将铁片投入	入浓 H ₂ SO ₄ 中,下列说	法正确的是	
A. 不发生反应	B. 铁被钝化	C. 产生大量 SO ₂	D. 产生大量 H ₂
14. 加热时,下列反应有	有单质生成的是		
A. Cu 与浓硫酸	B. Al与H ₂ O	C. Fe与S	D. H ₂ 与Cl ₂
15. 短周期元素 X 的最高	高价氧化物的化学式为	X ₂ O ₇ ,则 X 为	
A. C	B. N	C. S	D. Cl
16. 能将化学能转化为电	电能的是		
A. 水力发电	B. 风力发电	C. 太阳能电池	D. 铜锌原电池
17. 下列物质加入水中,	因水解而呈碱性的是		
A. 生石灰	B. 熟石灰	C. 纯碱	D. 烧碱
18. 氯、溴、碘单质的化	化学性质相似,原因是		
A. 均为有色单质		B. 均为双原子分子	
C. 原子最外层电子数	数均为7	D. 均可从海洋中提到	取
19. 一定条件下,通过单	单质间化合可得到的是		
A. FeCl ₃	B. SO ₃	C. Al(OH) ₃	D. HClO
20. pH=1 的溶液中含有	有 Na+、Cl¯、NO ₃ ¯,过	区可能含有大量的	
A. Fe^{3+}	B. Ag ⁺	C. OH	D. CO ₃ ²⁻
21. NaOH 溶于水时,扩	广散过程吸收了 akJ 的热	热量,水合过程放出了	bkJ 的热量。下列判断
正确的是			
A. a>b	B. a=b	C. a <b< td=""><td>D. 无法判断</td></b<>	D. 无法判断
22. 碘升华的过程中			
A. 吸收了热量	B. 化合价升高	C. 破坏了化学键	D. 生成了新物质

23. 向下列溶液中逐滴加入 NaOH 溶液至过量,先有白色沉淀生成,然后沉淀又消失的是

A. CuCl₂溶液 B. AlCl₃溶液 C. MgCl₂溶液 D. BaCl₂溶液

24. 下列反应不能用 H++OH-→H₂O 表示的是

A. 稀盐酸中滴加 NaOH 溶液中 B. 稀盐酸中滴加 Ba(OH)₂ 溶液中


C. 稀 HNO₃ 中滴加 NaOH 溶液中 D. 稀 H₂SO₄ 中滴加 Ba(OH)₂ 溶液中

25. 将 SO_2 和 H_2S 混合,有淡黄色固体出现,该反应中 H_2S 表现出

A. 还原性

B. 漂白性 C. 酸性 D. 氧化性

26. 中和滴定是一种化学分析方法。用标准盐酸滴定未知浓度的氢氧化钠溶液,无需使用的 仪器是

- 27. 实验室进行粗盐提纯, 无需进行的操作是
 - A. 分液
- B. 溶解 C. 过滤
- D. 蒸发
- 28. 为检验海带灰浸出液中是否含有 Ⅰ, 可向溶液中加入
 - A. 淀粉溶液

B. 盐酸

C. HNO₃ 酸化的 AgNO₃ 溶液

- D. CCl₄
- 29. 为除去铁粉中混有的少量铝粉,所选用试剂和操作都合理的是
 - A. 盐酸,蒸发

B. NaOH 溶液,蒸发

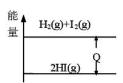
C. 盐酸, 过滤

- D. NaOH 溶液, 过滤
- 30. 向盛有 NaBr 溶液的试管中加入少量氯水,振荡,再加入适量 CCl4,振荡,静置。下列 判断正确的是

选项	Α.	В.	С.	D.
上层	红棕色	黄绿色	无色	无色
下层	无色	无色	红棕色	黄绿色

31. 硫酸亚铁易被氧化而变质、为检验某补血剂中硫酸亚铁是否变质,可向该补血剂配成的 溶液中加入

A. AgNO₃溶液

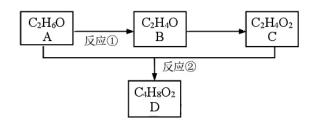

B. 盐酸酸化的 BaClo溶液

C. KSCN 溶液

- D. HNO3 酸化的 Ba(NO3)2 溶液
- 32. 实验室制取乙烯的发生装置如下图所示。下列说法正确的是
 - A. 烧瓶中加入乙醇、浓硫酸和碎瓷片
 - B. 反应温度控制在 140℃
 - C. 导出的气体中只有乙烯
 - D. 可用向上排气法收集乙烯

- 33. 多数植物中的色素遇酸碱会产生不同的颜色。紫罗兰含有色素 HZ, HZ 的水溶液呈紫 色且存在平衡 HZ(红色) ➡ H+OH (蓝色)。将 HZ 溶液滴入稀硫酸中,溶液的颜色为
 - A. 紫色
- B. 红色
- C. 蓝色
- D. 无色
- 34. 右图是 $H_2(g)$ 与 $I_2(g)$ 反应生成 HI(g)的能量示意图。由图可知
 - A. 该反应为吸热反应
 - B. 1 molHI(g)分解吸收的热量为 Q
 - C. 热化学方程式: H₂+I₂ ← 2HI+Q
 - D. 反应物总能量高于生成物总能量

- 35. 实验室电解饱和食盐水的装置如下图所示。下列判断正确的是
 - A. 电极 a 为阴极
 - B. 电极 b 上发生了还原反应
 - C. 阳极附近溶液变红
 - D. 阴极产生黄绿色气体



- 36. 一定温度下,固定体积的密闭容器中发生反应 M(g)+N(g) ₹ 2W(g),能说明该反应一 定达到平衡的是
 - A. υ(W)消耗= υ(W)生成
- В. υ ஈ= υ 逆=0
- C. 容器内压强保持不变
- D. n(M) : n(N) : n(W) = 1 : 1 : 2
- 37. 已知 $3CuO+2NH_3 \xrightarrow{\Delta} 3Cu+N_2+3H_2O$ 。下列判断正确的是
 - A. N 元素的化合价降低
- B. NH₃被还原
- C. 消耗 0.3molCuO 转移 0.6Na 个电子 D. CuO 是还原剂
- 38. 在 5L 密闭容器中进行反应 $C(s)+H_2O(g) \stackrel{\triangle}{\Longrightarrow} CO(g)+H_2(g)$,反应 2min, H_2 的物质的量 增加了 0.3 mol。 0 2 min 内 H_2 的反应速率为

C. 0.06mol/(L • min)	D. 0.12mol/(L • min)
39. 配制一定物质的量浓度的 NaCl 溶液,	下列操作会使溶液浓度偏高的是
A. 少量 NaCl 固体残留在称量纸上	B. 溶解 NaCl 时烧杯中有少量蒸馏水
C. 转移时没有洗涤烧杯和玻璃棒	D. 定容至液面最高处与刻度线相平
40. 为检验某溶液中是否含有 Cl-、CO ₃ 2-、	Na+、NH4+, 进行如下实验: 取样, 加入足量盐
酸,有气泡产生,再加入AgNO3溶液,有	「白色沉淀生成;另取样,加入足量 NaOH 溶液,
微热,产生的气体使湿润的红色石蕊试纸	变蓝。下列判断正确的是
A. 一定不含 Cl ⁻	B. 一定不含 Na+
C. 一定含有 Cl⁻、CO₃²⁻	D. 一定含有 CO ₃ ²⁻ 、NH ₄ +
二、综合分析题(共 20 分)	
(一)(本题共 12 分)	
氮是植物体内蛋白质、叶绿素的重要组成	成元素,氮肥能促进农作物和生长。氨是生产氮
肥的原料。	
回答下列问题:	
41. 与氮元素不在同一周期的元素是	。(选填编号)
a. 氢 b. 碳 c.	氮 d. 硅
42. 氮的电子式。	
43. 氨水呈碱性,写出氨水的电离方程式。	
44. 合成氨的化学方程式为 N ₂ (g)+3H ₂ (g) ←	➡2NH ₃ (g)+Q(Q>0)。为了又快又多地得到氨,
工业上可采用的条件是。(选填编	클 <u>무</u>)
a. 使用催化剂 b. 高压 c.	低压 d. 常温
45. 常见的氮肥有、、	o
46. 氨催化氧化生成 NO 是工业制硝酸的反	应之一,写出该反应的化学方程式。
(二) (本题共8分)	
A 是酒的主要成分,D 为具有果香味的无	E色油状液体。由 A 到 D 的转化如下:

B. 0.03mol/(L • min)

A. 0.3mol/(L • min)

回答下列问题:

47.	A 中的官能团为	_。C的名称是	>
48.	反应①的反应类型为。	反应②的反应条件为。	
49.	写出 B 的一种同系物的结构简式。		
50.	写出检验 B 是否完全转化为 C 的方法。		