六年级数学寒假班基础教案

目录

第一讲	有理数的意义、数轴、绝对值	1
第二讲	有理数的加减	6
第三讲	有理数的乘除	10
第四讲	有理数的混合运算、科学记数法	.15
第五讲	有理数的运算复习	20
第六讲	一元一次方程的概念和解法	.22
第七讲	期中考试	27
第八讲	一元一次方程的应用	.27
第九讲	不等式及其性质、一元一次不等式的解法	29
第十讲	不等式组、复习	31
第十一讲	一次方程组的解法	34
第十二讲	一次方程组的应用	36

第一讲: 有理数的意义、数轴、绝对值

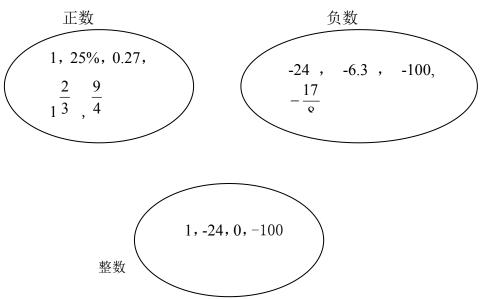
一、知识点梳理

- 1、 有理数:整数和分数统称为有理数。
- 2、 任何一个有理数都可以用数轴上的一个的点表示。
- 3、 只有符号不同的两个数,我们称其中的一个数位另一个数的相反数,也称这两个数互为相反数,零的相反数是零。
- 4、 一个数在数轴上所对应的点与原点的距离叫做这个数的绝对值。
- 一个正数的绝对值是;
- 一个负数的绝对值是;

零的绝对值是。

5、 两个负数,绝对值大的那个数反而小。

二、典型例题精析


例 1: 如果把学校减少学生数 173 人记作 -173 人,那么该校新学期各年级学生数变化情况的具体意义是什么?

六年级 13 人; 七年级 3 人; 八年级 -1 人; 九年级 -3 人

解: 六年级 13 人表示新学期增加 13 名学生; 同样地, 七年级 3 人表示增加 3 人;

而八年级-1人表示新学期该年级减少了1人:同样地,九年级-3人表示减少3人。

例 2. 把数 1, -24, 0, 25%, 0. 27, -6. 3, -100, $1\frac{2}{3}$, $-\frac{17}{8}$, $\frac{9}{4}$ 分别填入相应的圈内:

例 3. 在下列各数中,哪些是整数?哪些是正数?哪些是负数?哪些是有理数?

$$8, -3, 7\frac{1}{2}, -\frac{1}{6}, 69, 0, 0.32, -1\frac{2}{5}, -3.1$$

分析: 8, -3, 69, 0 是整数, 8, $7\frac{1}{2}$, 69, 0.32 是正数

$$-3$$
 , $-\frac{1}{6}$, $-1\frac{2}{5}$, -3.1 是负数,

8,
$$-3$$
, $7\frac{1}{2}$, $-\frac{1}{6}$, 69, 0, 0.32, $-1\frac{2}{5}$, -3.1 是有理数

例 4、用数轴上的点分别表示-3, 5, $-2\frac{1}{2}$, 1.2 和它们的相反数。

例 5、求 3.7, -12, 0,
$$-3\frac{1}{2}$$
的绝对值。

例 6、用数轴上的点表示下列各数,并将它们从小到大排列起来;

5, 0,
$$-1\frac{1}{2}$$
, 4.5, -1

例 7、比较-3.5 与
$$-2\frac{3}{5}$$
的大小。

三、同步精练:

- 1、某乒乓球比赛用+1表示赢一局,那么输2局用用表示,不输不赢用表示。
- 2、在 $-\frac{1}{3}$, 0, +4.5, π , 25%, $3\frac{2}{5}$, 2.1010010001… (每两个 1 之间多 1 个 0) 其中正

数是, 负数是, 不是有理数的是。

- 3、杨浦大桥桥面高出水平面 48 米,黄浦江江底低于水平面 10 米,杨浦大桥桥面比黄浦江江底高米。
- 4、-1与-4之间的负数有个。
- 5、若两个数互为相反数,那么这两个数的和是。
- 6、a-3的相反数是-1,那么a的相反数是。
- 7、a-b的相反数是。

- 8、 $-3\frac{1}{2}$ 的绝对值是,相反数是。
- 9、绝对值最小的数是。
- 10、在数轴上离开原点的距离小于 $2\frac{1}{3}$ 的整数是。
- 11、数轴上到 $-1\frac{2}{3}$ 所表示的点的距离等于 4 的点所表示的数是。
- 12、比较大小: $-\frac{2}{3} \frac{3}{4}$, $-\frac{9}{20} \frac{8}{15}$.
- 13、关于零的叙述,错误的是()

A.零大于所有的负数

B.零小于所有的正数

C.零是整数

D.零既是正数, 也是负数

14、用-a表示的数一定是()

A.负数 B.正数 C.正数或负数

D.任何一个数

15、若 m、n 互为相反数,且 m≠0,那么一定成立的是()

A.
$$\frac{n}{m} > 0$$
 B. $\frac{n}{m} = 1$ C. $\frac{n}{m} = -1$ D. $\frac{n}{m} = 0$

16、下列说法中,正确的是()

A.一个有理数的绝对值不小于它本身

- B. 若两个有理数的绝对值相等,那么这两个数相等
- C.若两个有理数的绝对值相等,那么这两个数互为相反数
- D.-a 的绝对值等于 a
- 17、把下面所给的数填入相应的大括号中:

$$-2.4, \frac{2}{7}, 0, 3.14, 1, 21, 80\%, -5\frac{3}{4}, -(-2006), 35, \pi, -5$$
 正整数 { },负整数 {

正有理数 {

}, 负有理数{

18、已知 a 是最小的正整数, b 的相反数为 -2 ,求 $ab + \frac{a}{b} + 2a - \frac{2}{3}b$ 的值。

拓展题:

- 1. a-b 的相反数是
- 2. 若 m、n 互为相反数,且 m≠0,那么一定成立的是(

A.
$$\frac{n}{m} > 0$$

B.
$$\frac{n}{m} = 1$$

A.
$$\frac{n}{m} > 0$$
 B. $\frac{n}{m} = 1$ C. $\frac{n}{m} = -1$ D. $\frac{n}{m} = 0$

D.
$$\frac{n}{m} = 0$$

- 3. 已知|a|=2,|b|=3,求a+b的值。
- 4. 已知|2x-3|=1,求x。

第二讲: 有理数的加减

一、知识点梳理

- 1、有理数加法法则:同号两数相加,取原来的符号,并把绝对值相加。 异号两数相加,绝对值相等时和为零;绝对值不相等时,其和的绝对值为较大的绝对值 减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号。
- 2、一个数同零相加,仍得这个数。
- 3、有理数加法运算律

交换律: a+b=b+a

结合律: (a+b)+c=a+(b+c)

4、有理数减法法则:减去一个数,等于加上这个数的相反数。

$$a - b = a + (-b)$$

二、典型例题精析

例 1: 已知
$$a > 0, b < 0,$$
 且 $|a| = 6, |b| = 2,$ 则 $a + b$ 等于()

A. 8 B. ±8 C. 4 D. -4

解: 由 |a| = 6, |b| = 2, 可知 $a = \pm 6, b = \pm 2$;

又因为
$$a > 0, b < 0$$
,所以 $a = 6, b = -2$;

则
$$a+b=6+(-2)=4$$
, 结果选择 C。

例 2、计算:

(1)
$$(-12) + (-36)$$
 (2) $(-\frac{2}{3}) + (-\frac{1}{3})$ (3) $(-1\frac{1}{4}) + 0$

例 3、计算:

(1)
$$3 + (-3)$$
 (2) $(-16) + 5$ (3) $\frac{11}{25} + (-2)$ (4) $24 + (-5.5)$

例 4、已知一辆运送货物的卡车从 A 站出发, 先向东行驶 15 千米, 卸货之后再向西行驶 25 千米装上另一批货物, 然后又向东行驶 20 千米后停下来, 问卡车最后停在何处?

例 5、计算:

(1)
$$16 + (-25) + 24 + (-32)$$
 (2) $0.125 + 2\frac{1}{4} + (-2\frac{1}{8}) + (-0.25)$

例 6、计算:

(1)
$$6 - (-6)$$
 (2) $0 - 9$ (3) $(-5\frac{1}{2}) - (-3\frac{1}{4})$ (4) $(-1\frac{1}{2}) - (\frac{1}{3})$

例 7、杨浦大桥桥面在黄浦江江面上方 48 米,江底在水面下方约 10 米,桥面与江底相距约 多少米?

例 8、(1) 什么数加上 $-5\frac{3}{4}$ 所得的和是 6?

(2)
$$-45$$
 加上什么数所得的和是 $-\frac{3}{2}$?

例 9、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自 O 地出发到收工时所走路线(单位:千米)为: +10、-3、+4、+2、-8、+13、-2、+12、+8、+5

- (1) 问收工时距 O 地多远?
- (2) 若每千米耗油 0.2 升,从 O 地出发到收工时共耗油多少升?

例 10、解方程: $-3\frac{5}{6}-2x=\frac{1}{2}$

三、同步精练:

- 1、某商店上半年赢利11.3万元,下半年亏损2.5万元,则全年共赢利万元。
- 2、若a、b互为相反数,c、d 互为倒数,则a+b+cd=。

3、计算:
$$-1\frac{1}{2}+(-2\frac{1}{3})=$$
。

4、计算:
$$\frac{1}{3} + (-1\frac{1}{2}) =$$
; $(-\frac{3}{7}) + 2 + (-\frac{4}{7}) =$ 。

5、减去 4.5 所得的差是 -6。

6、如果
$$a + b = 0(a, b \neq 0)$$
,那么 $\frac{|b|}{a} + \frac{|a|}{b} = .$

7、已知:
$$-3.5-x=-4$$
,则 $x=$ 。

8、如果
$$a < 0, b < 0, |a| > |b|$$
,那么 $a - b$ 0。

9、某地一周内每天的最高气温与最低气温记录如下表:

星期		=	三	四	五.	六	日
最高气温	10°C	12° <i>C</i>	11°C	9° <i>C</i>	7° C	5° C	7° C
最低气温	2° <i>C</i>	1° C	0° <i>C</i>	-1° C	-4° <i>C</i>	−5° C	−5° C

则温差最大的一天是星期;温差最小的一天是星期。

10、绝对值大于2且小于5的所有整数的和是()

11、若
$$a = -b$$
, $c = \frac{1}{d}$, $|m| = 2$, 则代数式 $m^2 - cd + \frac{a+b}{m}$ 的值为()

12、计算:
$$\frac{1}{2} + (-\frac{1}{5}) + (-2\frac{3}{10})(-2\frac{3}{4}) + 1\frac{2}{3} + 0.75 + \frac{1}{8} + (-3.125)$$

- 13、一辆货车从货场 A 出发,向东走了 2 千米到达批发部 B,继续向东走 1.5 千米到达商场 C,又向西走了 5.5 千米到达超市 D,最后回到货场。
- (1) 超市 D 距货场 A 多远?
- (2) 货车一共行驶了多少千米?

拓展题:

1. 如果
$$a + b = 0 (a, b \neq 0)$$
,那么 $\frac{|b|}{a} + \frac{|a|}{b} = _____$ 。

- 2. 如果 a < 0, b < 0, |a| > |b|, 那么 a b______0。
- 3. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自 O 地出发到收工时所走路线(单位:千米)为: +10、-3、+4、+2、-8、+13、-2、+12、+8、+5
- (1) 问收工时距 O 地多远?
- (2) 若每千米耗油 0.2 升,从 O 地出发到收工时共耗油多少升?

第三讲: 有理数的乘除

一、知识点梳理

- 1、两数相乘的符号法则:正乘正得正,正乘负得负,负乘正得负,负乘负得正。
- 2、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与零相乘,都得零。
- 3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负; 当负因数有偶数个时,积为正。几个数相乘,有因数为零,积就为零。
- 4、有理数除法法则:两数相除,同号得正,异号得负,并把绝对值相除。 零除以任何一个不为零的数,都得零。

二、典型例题精析

例 1: 若 a、b 互为相反数,c、d 互为倒数,m 的绝对值是 2,求 $\frac{a+b}{m}+m^2-cd$ 的倒数。

解:因为a、b 互为相反数,

所以a+b=0。

因为c、d 互为倒数,

所以cd=1。

因为m的绝对值是2,即|m|=2,所以 $m=\pm 2$ 。

所以
$$\frac{a+b}{m} + m^2 - cd = \frac{0}{\pm 2} + (\pm 2)^2 - 1 = 4 - 1 = 3$$
。

因为 3 的倒数是 $\frac{1}{3}$,

所以
$$\frac{a+b}{m}+m^2-cd$$
的倒数是 $\frac{1}{3}$ 。

例 2: 计算: (1)
$$\left(-2\frac{1}{2}\right) \times \left(-1\frac{1}{2}\right) \div \left(-\frac{1}{6}\right)$$

$$(2) \ \frac{1}{32} \div \left(-\frac{1}{7}\right) \div \left(-1.75\right)$$

解: (1)
$$\left(-2\frac{1}{2}\right) \times \left(-1\frac{1}{2}\right) \div \left(-\frac{1}{6}\right) = -\frac{5}{2} \times \frac{3}{2} \times 6 = -\frac{45}{2}$$

(2)
$$\frac{1}{32} \div \left(-\frac{1}{7}\right) \div \left(-1.75\right) = \frac{1}{32} \times 7 \times \frac{4}{7} = \frac{1}{8}$$

例 3、计算:
$$(-1\frac{1}{2})\times(-2\frac{1}{3})\times(-3\frac{1}{4})\times24$$

例 4、计算:

(1)
$$(-12.5) \times 0.19 \times (-8)$$
 (2) $0.12 \times (\frac{3}{4} - \frac{1}{6})$

例 5、计算:

(1)
$$35 \div (-7)$$
 (2) $(-36) \div (-72)$ (3) $(-4) \div \frac{2}{3}$ (4) $(-5) \div (-\frac{10}{11})$

例 6、计算:

(1)
$$(-3)\times(-\frac{3}{2})$$
 (2) $(-3)\div(-\frac{2}{3})$

结论:

例 7、计算

(1)
$$-4\frac{1}{4} \times 4\frac{5}{6} - 4.25 \times 6\frac{1}{6} + 4\frac{1}{4}$$
 (2) $(-81) \div 2\frac{1}{4} \times (-\frac{4}{9}) \div (-16)$

度是 $24^{\circ}C$,山顶的温度是 $-4^{\circ}C$,求这座山的高度。

例 9、已知 |x|=3, |x+y|=5, 求

- (1) x、y的值;
- (2) x+y-3的值。

例 10、某市规定了每户每月的用水标准,不超过标准用量按每立方米 1.2 元收费,超过部分按每立方米 3 元收费。张大爷本月用水 9 立方米,需交费 16.2 元,问该市月标准用水量是多少立方米?

例 11、计算:

$$(1+\frac{1}{2})\times(1+\frac{1}{4})\times(1+\frac{1}{6})\times\cdots\times(1+\frac{1}{10})\times(1-\frac{1}{3})\times(1-\frac{1}{5})\times\cdots\times(1-\frac{1}{9})$$

三、同步精练:

- 一、填空
- 1、绝对值最小的有理数是。
- 2、两个有理数相乘,同号得,异号得,并把相乘。
- 3、 $-2\frac{3}{4}$ 的倒数是,相反数是。
- 4、若m、n是两个有理数,且m<n<0,则(m+n)(m-n)的符号是。

5、如果a、b 互为负倒数,则ab=。

6、 计算:
$$(-2\frac{7}{13}) \times \frac{2}{11} =$$
, $(-1\frac{1}{7}) \div (-1\frac{3}{4}) =$

- 7、A点表示-5,在数轴上距离 A点 3个单位长度的 B点表示的数是。
- 8、减去-4.5所得的差是-3。
- 9、如果 $(2a+3)^2+|1-3b|=0$,那么a+b=0
- 10、若|x|=-x,那么x的取值范围是。
- 二、选择
- 1、一个有理数的绝对值大于它本身,这个数是()
- A.负数
- B.零
- C.正数
- D.都有可能
- 2、若一个数的倒数的相反数是 $\frac{6}{5}$,则这个数是()
- B. $-\frac{5}{6}$ C. $\frac{6}{5}$ D. $-\frac{6}{5}$
- 3、如果两个有理数的积为零,则下列说法正确的是()
- A.两个有理数都是 0
- B.有一个有理数是 0
- C.至少有一个有理数是 0 D.以上结论均不对

- 一、解答
- 1、计算: (1) 2.5+24+(-8)-(-0.5) (2) $5\div0.6-1\frac{2}{3}\times1\frac{1}{2}$
- 2、列式计算: $-6\frac{2}{3}$ 的绝对值的 $\frac{1}{4}$ 乘以 $\left(-\frac{5}{4}\right)$ 所得的积是多少?
- 3、仓库有大米 4000 吨,第一天运走 $\frac{2}{5}$,第二天运走剩下的 30%,问仓库还余下大米多少 吨?

拓展题:

1. 若m、n是两个有理数,且m<n<0,则(m+n)(m-n)的符号是_____

- 2. $\overline{x} |x| = -x$,那么x的取值范围是_____。
- 3. 某市规定了每户每月的用水标准,不超过标准用量按每立方米 1.2 元收费,超过部分按每立方米 3 元收费。张大爷本月用水 9 立方米,需交费 16.2 元,问该市月标准用水量是多少立方米?
- 4. 计算:

$$(1+\frac{1}{2})\times(1+\frac{1}{4})\times(1+\frac{1}{6})\times\cdots\times(1+\frac{1}{10})\times(1-\frac{1}{3})\times(1-\frac{1}{5})\times\cdots\times(1-\frac{1}{9})$$

第四讲:有理数的混合运算、科学记数法

一、知识点梳理

1、求n个相同因数的积的运算,叫做乘方。乘方的结果叫做幂。在 a^n 中,a叫做底数,n叫做指数。 a^n 读作a的n次方。

特别地, $1^n = 1.0^n = 0$

- 2、有理数混合运算的顺序: 先乘方,后乘除,再加减;同级运算从左到右;如果有括号, 先算小括号,后算中括号,再算大括号。
- 3、把一个数写成 $a \times 10^n$ (其中 $1 \le |a| < 10$,n是正整数),这种形式的记数方法叫做科学记数法。

二、典型例题精析

例 1:

计算:
$$(+1)^n - (-1)^n (n$$
为正整数)

解:因为任何一个数 (0) 除外)的偶次幂是正数,而负数的奇次幂是负数,所以本题中由于指数 n 是字母,其奇偶性不明确,因而需要分类讨论:

当 n 为奇数时,
$$(+1)^n - (-1)^n = 1 - (-1) = 1 + 1 = 2$$

当 n 为偶数时,
$$(+1)^n - (-1)^n = 1 - 1 = 0$$

例 2: 把每天工作 8 小时化成秒数, 并用科学计数法表示这一结果。

解:8 小时化成秒数:8×3600=28800(秒)

$$28800 = 2.88 \times 10^4$$
 (秒)

例 3: 某数用科学计数法表示为 3.12×10³, 那么这个数有____个整数数位。

解:根据一个整数的位数与 10 的整数次幂的指数 n 的数量关系,可知 3+1=4 即为该整数的位数, 3.12×10^3 有 4 个整数数位。

例 4、计算

(1)
$$\left(-\frac{1}{2}\right)^5$$
 (2) $\left(-\frac{2}{3}\right)^4$ (3) $\left(-1.5\right)^3$ (4) $\left(-1\right)^{2004}$

例 5、计算

(1)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8}$$
 (2) $15 \div (-5 - 3)^2$ (3) $3^2 - (-2)^2$

(4)
$$-[-(-2)]^2$$
 (5) $15-4 \div 8 + (-3)^2 \times 2$ (6) $\frac{2}{3} - (\frac{1}{2} - \frac{1}{5})$

例 6、计算:

(1)
$$-1^4 - \frac{1}{3} \times \left[2 - (-3)^2\right]$$
 (2) $\left(\frac{1}{2}\right)^2 + \left[-(-7) + (-1)^3\right] \times \frac{2}{3}$

(3)
$$\left[(\frac{1}{8} - \frac{1}{12}) \times 24 \right]^2$$
 (4) $(-2^3 + 85) \times (-3\frac{1}{3} + 1 + \frac{7}{3})$

例 7、用科学记数法表示下列各数:

$$(2)$$
 -10200000

$$(1) 261500 \qquad (2) -10200000 \quad (3) 5107000 \quad (4) \quad -5635000$$

例 8、一个人每天吸入和呼出大约 20000 升空气,一年吸入和呼出的空气大约有多少升?

例 9、计算:

$$(1) \ (-2)^3 \div (1\frac{1}{3})^2 + (-4\frac{1}{2}) \times \frac{1}{3} + 125\% \ (2) \ (\frac{1}{4})^2 \div (-\frac{1}{2})^3 \times (-1) - (1\frac{3}{8} - 3\frac{3}{4}) \times 24$$

例 10、第一小组有 12 名同学,数学测验成绩分别为: 85 分,92 分,99 分,100 分,78 分,92 分,89 分,83 分,95 分,96 分,91 分,95 分,这 12 名同学的平均成绩超过 90 分?

例 11、红星中学为资助贫困山区学生开展了一次募捐活动,所募集款项用于购买学习用品, 商店对购买其学习用品的客户实行如下的优惠方法:

- (1) 一次购买金额不超过5000元,不予优惠;
- (2) 一次购买金额超过5000元,但不超过15000元给九折优惠;
- (3) 一次购买金额超过 15000 元的,其中 15000 元九折优惠,超过 15000 元的部分八折 优惠,该校第一次用教师捐款购买文具付款 3600 元,第二次用学生捐款购买文具 11700 元,如果一次购买同样文具,那么可少付多少元?

三、同步精练:

$$1, -\frac{5}{3} \times \frac{5}{3} \times \frac{5}{3}$$
 写成乘方形式。

2、若
$$mn = -1$$
,则 $(mn)^{2008} =$, $(mn)^{2007} =$ 。

3、若一个数的7次方是一个负数,则该数一定是数。

4、
$$(-1\frac{2}{3})^2$$
的倒数是。

5、若一个数用科学记数法表示为2.76×10⁴,则原数位。

7、观察下列一列有规律的数: $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{12}$, $\frac{1}{20}$, $\frac{1}{30}$, $\frac{1}{42}$, ... 根据规律可知, 第 8 个数是

8、若a > 3,则|a-3| =; 若|x-3| = 2,则 x^3 的倒数是。

9、人类的遗传物质就是 DNA,人类的 DNA 是很长的链,最短的 22 号染色体也长达 30000000 个核苷酸,用科学记数法表示 30000000 为()

A. 3×10^8 B. 3×10^7 C. 3×10^6 D. 0.3×10^8

10、若 $a = 2^5$, $b = 3^4$, $c = 4^3$, 则a、b、c的大小关系是()

A. a > b > c B. b > c > a C. c > a > b D. a < b < c

11、计算

$$\left[2\frac{1}{2} - \left(\frac{3}{8} + \frac{1}{6} - \frac{3}{4}\right) \times 24\right] \div (-3^2 + 4) \times (-1)^{2005}$$

12、某工厂头两个季度生产的产品,以月份统计,把第一个月生产 35 件作为标准数,比 35 件多的记为正数,比 35 件少的记作负数,列表如下:

月份	一月	二月	三月	四月	五月	六月
一月份与其他月份的差	0	+4	+8	-5	-7	+12

- (1) 五月份产量为多少?比一月份增加(或减少)了百分之几?
- (2) 第二季度总产量比第一季度总产量多(或少)多少?
- (3) 上半年的月平均产量是多少?

拓展题:

红星中学为资助贫困山区学生开展了一次募捐活动,所募集款项用于购买学习用品,商店对购买其学习用品的客户实行如下的优惠方法:

- (4) 一次购买金额不超过5000元,不予优惠;
- (5) 一次购买金额超过5000元,但不超过15000元给九折优惠;
- 一次购买金额超过 15000 元的,其中 15000 元九折优惠,超过 15000 元的部分八折优惠,该校第一次用教师捐款购买文具付款 3600 元,第二次用学生捐款购买文具 11700 元,如果一次购买同样文具,那么可少付多少元?

第五讲 有理数的运算复习

基础题:

1. 计算:

(1)
$$9 \div 3 + \left(\frac{1}{2} - \frac{2}{3}\right) \times 12 + 3^2$$

$$(2)$$
 $(-2)^2 + 100 \div (-2)^3 \div (-5)^2 + (0.25)^{2007} \times 4^{2006}$

$$(3) \quad -1 - \left[1 - \left(1 - 0.5 \times \frac{1}{3}\right)\right] \times \left[12 - \left(-3\right)^{2}\right]$$

$$-(-4.5) \div \left(\frac{1}{2} - 0.25\right)^2 - 3.5 \div \left|-0.25\right|^2$$

$$(5) - (-3)^3 + (-3)^3 - (-2)^3 \times \left(\frac{1}{3} - \frac{1}{2}\right) \div \left(-\frac{1}{6}\right) - (-3)$$

$$\left| 4\frac{1}{2} + \left[-(-5)^2 \times \left(\frac{1}{5} \right)^2 - 0.8 \right] \right| \div 5\frac{2}{3}$$

$$(7) \quad -11.35 \times \left(-\frac{2}{3}\right)^2 - 1.05 \times \left(-\frac{2^2}{9}\right) + 7.7 \times \left(-\frac{4}{3^2}\right)$$

$$(8) -5^{2} - \left\{ 8.5 - \left[(-3)^{2} - 2^{2} \times \left(-\frac{1}{4} \right) \right] \right\} \div \left(-\frac{1}{2} \right)^{2}$$

拓展题:

1. 当
$$a < -2$$
 时,请化简 $|1-a| + |2a+1| + |a|$ 。

2. 化简
$$|x-5|+|2x|$$
。

3. 化简
$$|x-5|+|2x-7|$$
。

4. 化简
$$|x+3| + |3-x| - 4.5|x| + 5$$
。

5. 若 a, b, c 均不为零,求
$$\frac{|a|}{a} + \frac{|b|}{b} + \frac{c}{|c|}$$

6. 有理数 a, b, c, d满足
$$\frac{|abcd|}{abcd} = -1$$
, 求 $\frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c} + \frac{|d|}{d}$ 的值。

7. 己知
$$\frac{a}{|a|} + \frac{|b|}{b} + \frac{c}{|c|} = 1$$
,求 $\left(\frac{|abc|}{abc}\right)^{2006} \div \left(\frac{bc}{|ab|} \times \frac{ac}{|bc|} \times \frac{ab}{|ac|}\right)$ 的值。

8.
$$2a + |4 - 5a| + |1 - 3a|$$
 的值是一个定值,求 a 的取值范围。

第六讲: 一元一次方程的概念和解法

一、知识点梳理

- 1、含有未知数的等式叫做方程,在方程中,所含的未知数又称为元、
- 2、如果未知数所取的某个值能使方程左右两边的值相等,那么这个未知数的值叫做方程的 解。
- 3、只含有一个未知数且未知数的次数是一次的方程叫做一元一次方程。
- 4、求方程解的过程叫做解方程。
- 5、解一元一次方程的一般步骤是:
- (1) 去分母;
- (2) 去括号:
- (3) 移项;
- (4) 化成 $ax = b(a \neq 0)$ 的形式;
- 两边同除以未知数的系数,得到方程的解 $x = \frac{b}{a}$ 。

二、典型例题精析

例1: 下列方程是一元一次方程的是(

- A. 3x + y = 4 B. $3x + 1 = x^2$ C. x = 1 D. 3 + 1 = 4

解: A.不是,3x + y = 4含有两个未知数x、y,是二元一次方程。

B不是, $3x+1=x^2$ 不是每一项的次数都是1次, x^2 项的次数是2次,是一元二次方程。 C是。

D不是,等式中不含未知数,不是方程,当然不会是一元一次方程。

答: 是一元一次方程的是C。

例2:解下列方程不正确的是(

(A)
$$-\frac{1}{5}x = -3$$
, 两边同乘以-5, 得 $x = 15$

- (B) 3x = 18, $8\pi = 18 3$, 4x = 15
- (C) 6x = 2, 两边同乘以 $\frac{1}{6}$, 得 $x = \frac{1}{3}$
- (D) $\frac{x}{2} = -8$, 两边同乘以2, 得x = -16

解: (A) $-\frac{1}{5}x = -3$, 两边同乘以-5, 得x = 15是正确的。

(B) 3x = 18, 移项得 x = 18 - 3, 得 x = 15 是错误的, 正确的应该是 3x = 18, 两边

同除以3, 得x=6。

$$\frac{1}{6}$$
 (C) $6x = 2$, 两边同乘以 $\frac{1}{6}$, 得 $x = \frac{1}{3}$ 是正确的。也可以两边同除以6。

(D)
$$\frac{x}{2} = -8$$
, 两边同乘以2, 得 $x = -16$ 是正确的。

答:解方程不正确的是B。

例 3、列方程:

- 1、某水果店有苹果与香蕉共152千克,其中苹果的重量是香蕉重量的3倍,求该水果店的苹果与香蕉各有多少千克?
- 2、有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排住4人,将会空出5间宿舍;如果每间宿舍安排住3人,就有100人没床位,那么在学校住宿的学生有多少人?
- 3、一个两位数的十位数字比个位数字的 4 倍多 1,十位数字与个位数字之和是 11.求这个两位数。
- 4、毕业生在礼堂就座,若一条长椅上坐3人,就有35人没座位。若一条长椅上坐4人, 正好空出5条长椅。问毕业生共有多少人?
- 5、(1) 某数 x 的 35%与 4 的差的 $\frac{1}{2}$ 等于 3。
 - (2) 某数 y = 2 的和的 $\frac{1}{3}$ 比这个数的 4 倍小 1。

例 4、检验下列各数是不是方程 $\frac{2y+8}{5} = y + \frac{5}{2}$ 的解:

(1)
$$y = 0$$
; (2) $y = -\frac{3}{2}$

例 5、判断下列方程是不是一元一次方程,如果不是,请简要说明理由。

(1)
$$5x = 0$$
; (2) $x - 2y = 56$;

(3)
$$3+5=8$$
; (4) $2y-(y+9)=15$

例 6、解方程:

(1)
$$4x = 18 - 2x$$
 (2) $5x + 1 = 20x - (7x - 3)$ (3) $4(x - 2) + 5 = 35 - (x - 2)$

(4)
$$2x-3=3x-(x-2)$$
 (5) $\frac{x}{16}=\frac{4x+5}{8}+2$ (6) $\frac{x-1}{4}-1=\frac{2x+1}{6}$

(7)
$$\frac{1}{2}(2x-3) - \frac{x-4}{2} = 1$$
 (8) $x - \frac{x-1}{2} = 2 - \frac{x-3}{5}$ (9) $\frac{x-1}{0.3} - \frac{x+2}{0.5} = 1.2$

例 7、在 2004 年雅典奥运会闭幕式上,中国表演队用了 8 分 49 秒表演舞动北京、中华武术、少儿京剧等节目。这三个节目的表演时间之比是 10:8:5。那么舞动北京、中华武术、少儿京剧等节目表演的时间各是多少秒?

例 8、小明的妈妈在银行里存入人民币 5000 元,国家规定存款利息的纳税办法是:利息税=利息×20%,储户取款时由银行代扣代收,存期一年,到期可得人民币 5090 元,求这项储蓄的年利率是多少?

例 9、小杰、小丽分别在 400 米环形跑道上练习跑步与竞走,小杰每分钟跑 320 米,小丽每分钟走 120 米,两人同时由同一起点同向出发,问几分钟后,小丽和小杰第一次相遇。

例 10、轮船在静水中的速度为每小时 20 千米,水流速度为每小时 4 千米,从甲码头顺流航行到乙码头,再返回到甲码头,共用 5 小时(不计停留时间)。求甲乙两码头之间的距离。

例 11、若x=2是关于x的方程ax+b=c的解

求: (1)
$$(2a+b-c-1)^{2006}$$
的值;

(2)
$$|c-b-2a-9|$$
 的值。

三、同步精练:

- 2、某数x的一半比它的平方少 $\frac{1}{2}$,则可列方程为。
- 3、由 $\frac{3-x}{4} \frac{x-1}{3} = 1$ 去分母得,去括号得。
- 4、式子2x+1与x+2的值相等,那么x=。
- 5、某数x的 2 倍与它的相反数的差是 2,则x=。
- 6、小明到文具店去买文具, 进价 4 元的文具打 7 折出售, 老板仍可获利 5%, 则这个文具

原标价为。

7、已知一个长方形两邻边之比是2:3,它的周长为30,那么长方形的面积。

8、A、B 两地相距 480 千米,一列慢车从A 地出发,每小时走 60 千米,一列快车从B 地开出,每小时走 65 千米,两车同时开出,背向而行,x小时后,两车相距 615 千米,由此可列方程。

9、用方程来表示"某数的 30%比它的倒数的 $\frac{2}{3}$ 还多 $\frac{1}{2}$ ",正确的是()

A. 30%
$$x - \frac{1}{3} \cdot \frac{1}{x} = \frac{1}{2}$$
 B. 30% $x - \frac{2}{3} \cdot x = \frac{1}{2}$

C. 30%
$$x - \frac{2}{3} \cdot \frac{1}{x} = \frac{1}{2}$$
 D. 30% $x - \frac{3}{2} \cdot \frac{1}{x} = \frac{1}{2}$

10、小丽把春节得到的压岁钱 300 元存入银行,一年后的本利和为 306 元,若年利率为x,得到的利息需交 5%的利息税,则可列方程为()

A.
$$300(1+x) = 306$$
 B. $300(1+0.95x) = 306$

$$C.300x = 306 D.300(1-x) = 306$$

11、解方程:

(1)
$$1+2x=4-(x+4)$$
; (2) $\frac{x-1}{2}-\frac{2x+3}{3}=1$; (3) $\frac{1}{3}(1-2x)=\frac{2}{7}(3x+1)$

12、光明中学六(1)班,全班同学去公园划船,如果少租一条船,每条船正好坐9人;如果多租一条船,每条船正好坐6人,问这个班原计划租几条船?

13、某商品的进价是 1530 元,按商品标价的 9 折出售时,利润率是 15%,问商品的标价是 多少元?

拓展题:

若x=2是关于x的方程ax+b=c的解

求: (1)
$$(2a+b-c-1)^{2006}$$
的值;

(2)
$$|c-b-2a-9|$$
 的值。

第七讲 期中考试

第八讲 一元一次方程的应用

一、知识点梳理

一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

二、典型例题精析

例 1: 2008 年中国将举办奥运会。2004 年中国政府提出了"节俭办奥运"的新理念,将建造国家体育馆的预算资金调整为 26 亿元,比原预算节约资金 35%,问原建造国家体育馆的预算资金为多少亿元。

例 2、2004 年雅典奥运会闭幕式上,中国表演队用了 8 分 49 秒表演舞动北京、中华武术、少儿京剧等节目,这三个节目的表演时间之比是 10:8:5. 那么舞动北京、中华武术、少儿京

例 3、一个学生有中国邮票和外国邮票共 352 张,中国邮票的张数比外国邮票张数的 2 倍少5,这个学生有中国邮票和外国邮票各多少张?

例 4、一个学生有中国邮票和外国邮票共 352 张,中国邮票的张数比外国邮票张数的 2 倍少 5,这个学生有中国邮票和外国邮票各多少张?

例 5: 一种节能型冰箱,商店按原售价的九折出售,降价后的新售价是每台 2430 元。因为商店按进价加价 20%作为原售价,所以降价后商店还能赚钱。请问:这种节能型冰箱的进价是多少元?按降价后的新售价出售,商店每台还可赚多少元?

例 6、小杰、小丽分别在 400 米的环形跑道上练习跑步与竞走,小杰每分钟跑 320 米,小丽每分钟走 120 米,两人同时由同一起点同向出发,问几分钟后,小丽与小杰第一次相遇。

例 7、甲乙两人同时从两地相对而行,甲骑自行车每小时 15 公里,乙骑摩托每小时 34 公里,甲离出发地点 3705 公里处与乙相遇,两地相距多少公里?

第九讲 不等式及其性质、一元一次不等式的解法

一、知识点梳理

- 1、用不等号"〈"、"〉"、"≤"、"≥"表示的关系式叫做不等式.
- 2、不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变、即若 a < b,则 a + m < b + m
- 3、不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即若 a < b,则 a + m < b + m

不等式的性质:

- 1. 若 a < b, 则 a + m < b + m
- 2. 若 a < b, m > 0, 则 am < bm
- 3. **若 a < b**, m < 0,则 am > bm.
- 4、一元一次不等式的解题步骤:
- (1) 去分母
- (2) 去括号
- (3) 移项
- (4) 化成 ax > b (或者 ax < b) 的形式 (其中 $a \neq 0$)
- (5) 两边同除以未知数的系数,得到不等式的解集

二、典型例题精析

例 1、用不等式表示:

- 1) a 与 b 的和小于 0;
- 2) x的一半减去3所得的差大于或等于-5;

练习1: 用不等式表示:

- 1) a 是负数
- 2) *x* 的 3 倍是非负数
- 3) 8与y的2倍的和是正数

区别: 8与 y 的和的 2倍是正数

- 4) x的一半不大于9
- 5) a-2 不小于-3 且小于 3
- 6) 1减去 x 所得的差的 3 倍不大于 x 与 9 的差的 4 倍
- 7) x的一半减去一3 所得的差大于或等于 7;
- 8) m和n的平方差是负数

区别: m和n的差的平方是非负数;

例 2: 求下列不等式的解集,并把它们的解集分别在数轴上表示出来。

(1)
$$x - 2 < 0$$
 (2) $3x \ge -15$

例 3:解下列不等式,并把它们的解集在数轴上表示出来:

(1)
$$-7x < -2x + 3$$
 (2) $11x - 2 \ge 20x - 5$

(3)
$$\frac{5}{9}x-3 \le \frac{2}{3}x+1$$
 (4) $4x-10 < 15x-(8x-2)$

(5)
$$2(3x-1) < 25-3(4x+3)$$
 (6) $3x+12 > 40-x$

(7)
$$\frac{3}{2}(x-1) \ge 5$$
 (8) $\frac{7}{2}[\frac{10}{7}(x-3) - \frac{4}{7}] < 3$

例 4: 如果 x 是非负整数,当 x 取什么数时,7-4x 的值大于 $\frac{7}{4} - x$ 的值的相反数?

第十讲 不等式组、复习

- 一、选择题:
- 1. "x 的 2 倍与 3 的差不大于 8"列出的不等式是()
- (A) $2x-3 \le 8$: (B) $2x-3 \ge 8$: (C) 2x-3 < 8: (D) 2x-3 > 8.
- 2. 下列不等式一定成立的是()
- (A) 5a > 4a ; (B) x + 2 < x + 3; (C) -a > -2a ; (D) $\frac{4}{a} > \frac{2}{a}$.
- 3. 如果x < -3,那么下列不等式成立的是()
 - (A) $x^2 > -3x$; (B) $x^2 \ge -3x$; (C) $x^2 < -3x$; (D) $x^2 \le -3x$.
- 4. 不等式-3x+6>0的正整数有()
- (A) 1个; (B) 2个; (C) 3个; (D) 无数多个.
- 5. 若 m 满足|m| > m,则 m 一定是()
- (A) 正数: (B) 负数: (C) 非负数: (D) 任意有理数.
- 6. 在数轴上与原点的距离小于 8 的点对应的 x 满足 ()
- (A) -8 < x < 8; (B) $x < -8 \neq x > 8$; (C) x < 8; (D) x > 8.
- 7. 下列说法中,正确的有()
- ①若 ab < 0, 则 a < 0, b < 0; ②若 a < 0, b > 0, 则 ab < 0; ③若 $\frac{a}{m^2} < \frac{b}{m^2}$, 则 a < b;
- ④若a < b,则 $am^2 < bm^2$;⑤若a < b < 0,则a + b < 0;⑥若a + b < 0,则a < b < 0.
- (A) $4\uparrow$; (B) $3\uparrow$; (C) $2\uparrow$; (D) $1\uparrow$.
- 8. 下列说法正确的是()
- (A) 5是不等式x+5>10的解集; (B) x<5是不等式x-5>0的解集;
- (C) $x \ge 5$ 是不等式 $-x \le -5$ 的解集; (D) $x \ge 3$ 是不等式 $x 3 \ge 0$ 的解集.
- 9. 若a-b<0,则下列各式中一定正确的是()
- (A) a > b; (B) ab > 0; (C) $\frac{a}{b} < 0$; (D) -a > -b.
- 10. 不等式5*x*−1≤24的正整数解有()
- (A) 4个: (B) 5个: (C) 6个: (D) 无限多个.
- 11. 实数b满足|b|<3,并且实数a使得a<b恒成立,则a的取值范围是()
- (A) 小于或等于3的实数; (B) 小于或等于-3的实数;
- (C) 小于-3的实数; (D) 小于3的实数.
- (A) $x^2 \ge -4x$; (B) $x^2 \le -4x$; (C) $x^2 > -4x$; (D) $x^2 < -4x$.
- 13. 关于x的方程 $\frac{2x+a}{3} = \frac{4x+b}{5}$ 的解不是负数,则a与b的关系是()
- (A) $a > \frac{3}{5}b$; (B) $b \ge \frac{5}{3}a$; (C) 5a = 3b; (D) $5a \ge 3b$.

- 14. 在不等式100 < 5x中,能使不等式成立的x值为()
- (A) 18; (B) 19; (C) 20; (D) 21.
- 15. 下列不等式中,错误的是()

(A)
$$-7 < -5$$
; (B) $5 \ge 3$; (C) $1 + a^2 > 0$; (D) $a > -a$.

- 16. 已知: 5x-m ≤ 0只有两个正整数解,则m的取值范围是()
- (A) 10 < m < 15; (B) $10 \le m \le 15$; (C) $10 < m \le 15$; (D) $10 \le m < 15$.
- 17. 下列各式中,一元一次不等式是()

(A)
$$\frac{1}{2}x - y < 1$$
; (B) $x^2 - 3x + 2 > 0$; (C) $\frac{2x + 1}{4} = \frac{1 + x}{2}$; (D) $\frac{1}{2}x + \frac{1}{3}x > \frac{1}{6}x$.

- 二、填空题:
- 1. 不等式 6-2x>0 的解集是.
- 2. 当 x 时,代数式 $\frac{3x-2}{-5}$ 的值是非正数.
- 3. 当 m 时,不等式(2-m)x < 8 的解集为 $x > \frac{8}{2-m}$.
- 4. 若 $x = \frac{a+3}{2}$, $y = \frac{a+2}{3}$, 且 x > 2 > y, 则 a 的取值范围是.
- 5. 5m-3是非负数,用不等式表示为.
- 6. 不等式 $-8 < \frac{2-3x}{4} 6 < -5$ 的解集为.
- 7. 当a > b,则 $ab < b^2$ 成立的条件是.
- 8. 明明的语文、外语两科的平均分为m分,若使语文、外语、数学三科的平均分超过n分,则数学分数a(分)应满足的关系式是(m<n).
- 9. 设*a*<*b*,用"<"或">"号填空:

(1)
$$a - \frac{1}{2}b - \frac{1}{2}$$
; (2) $a + 100 b + 100$;

(3)
$$1.5a$$
 $1.5b$; (4) $-\frac{a}{12} - \frac{b}{12}$.

- (5) 如果 a>b,那么 a+cb+c:
- (6) 如果 m > n, p > 0, 那么 mpnp.
- 10. 若-3x+4<-2x-5,则-x-9.
- 11. 不等式x < 3的非负整数解是.
- 12. 不等式|x|-2≤3的正整数解是.

13. 在2
$$y^2$$
-3 y +1>0, y^2 +2 y +1=0, -6<-2, $\frac{2y-1}{3}$ - y <0, $7x$ +5 \geqslant 5 x +6 φ , 一元

- 一次不等式有个,它们是.
- 三、解答题:
- 1. 解下列不等式,并把解集在数轴上表示出来:

(1) 3
$$(1-x)$$
 -2 $(x+8)$ <2; (2) 3 $(x+3)$ -5 $(x-1) \ge 7$;

$$(2) \ 3 \ (x+3) \ -5 \ (x-1) \ge 7$$

(3)
$$\frac{2-x}{3}+1 \leqslant \frac{x+2}{4}$$
;

(3)
$$\frac{2-x}{3} + 1 \le \frac{x+2}{4}$$
; (4) $\frac{3}{2}x - \frac{1}{6}(9x-6) \ge 7 + x$.

2. 当x取什么数时,代数式 5 (x-1) -2 (x-2) 的值是正数? 是负数?

3、我市一郊区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房.如果 每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位, 问该校可能有几间住房可以安排学生住宿? 住宿的学生可能有多少人?

4、(1) y 是什么数时, $\frac{6y-1}{4} - 2y$ 的值是正数? (2) x 是什么数时, $\frac{3x-5}{4} - \frac{2x+3}{6}$ 的 值不大于 2? (3) 求不等式 $\frac{1}{7}(8-2x) - \frac{3x-1}{5} < 4$ 的负整数?

第十一讲 一次方程组的解法

1、用代入法解二元一次方程组的关键是"消元",把新问题(解二元一次方程组)转化为用旧知 识(解一元一次方程)来解决.

- 2、用代入法解二元一次方程组的一般步骤,常常选用系数较简单的方程变形,这有利于正 确、简捷的消元.
- 3、用加减消元法解二元一次方程组,对某些二元一次方程组可通过方程两边分别相加(减), 消去其中一个未知数,得到一个一元一次方程,从而求出它的解。
- 4、用加减消元法解二元一次方程组的主要步骤,是观察求未各数的系数的绝对值是否相同, 若互为相反数就用加,若相同,就用减,达到消元目的。这种通过两式相加(减)消去一个 未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。
- 5、解二元一次方程组的步骤:二元一次方程组 _____ 一元一次方程 回代

_____ 解一元一次方程 ________求另一个未知数的值 ______ 写出方程组的解。

第一部分: 二元一次方程

问题引入:小丽母亲的生日到了,小丽用 10 元钱去买一束鲜花送给母亲,这束鲜花要有红 和粉红两种颜色的康乃馨组成。已知红色康乃馨 0.7 元一支, 粉红色康乃馨 0.5 元一支, 那 么这束花可以由几支红色康乃馨,几只粉红色康乃馨组成?

概念:含有 未知数的一次方程叫做二元一次方程。 二元一次方的解。

方程	一元一次方程	二元一次方程
含有未知数的个数	一个	两个
含有未知数的次数	一次	一次
解的含义	使一元一次方程两边的值相等的一个未知数	一元一次方程的全体
解集的含义	使二元一次方程两边的值相等的两个未知数	二元一次方程解的全体
解的个数	一个	无数个(组)

练习:下列那些方程是二元一次方程,为什么?

(1)
$$x + \frac{3}{4}y = 0$$

(2)
$$3x - 2y = 3z$$

(2)
$$3x - 2y = 3z$$
 (3) $3(x - y) = 4(1 - x)$

(4)
$$3(x-2) = 7-2x$$
 (5) $5x-6=3xy$ (6) $x=y$

$$(5)$$
 $5r - 6 - 3r$

(6)
$$x = y$$

例 1: 将方程 2x + 3y = 30 变形为

- (1) 用含x的式子表示y.
- (2) 用含y的式子表示x.
- (3) 并求当 x 分别取 2,-5 时相应的 y 的值。和 y 分别取 2,-5 时相应的 x 的值。
- (4) 求 2x + 3y = 30 的正整数解.

例 2: (1) 求二元一次方程 2x + y = -5 的负整数解.

(2) 求二元一次方程 3x + 2y = 12 的非负整数解.

例 3: 选择最合适的方法解方程组:

$$(1) \begin{cases} 7x + 2y = 11 \\ x - y = -1 \end{cases}$$

$$\begin{cases} x + 2y = 1 \\ 2x - 3y = 9 \end{cases}$$

$$(3) \quad \begin{cases} 5x - 3y = 18 \\ 3x + 4y = 5 \end{cases}$$

(4)
$$\begin{cases} 2x - 3y = 19 \\ 4x - 6y = 39 \end{cases}$$

第十二讲 一次方程组的应用

1. 为民便利店有甲、乙、丙三种糖果,每千克售价分别为 10 元、12 元、15 元,将三种糖果混合成 20 千克什锦糖果,每千克售价定为 12.25 元,已知乙糖果的重量是甲糖果的 $\frac{5}{8}$,问这三种糖果各取多少千克才能保持收入平衡?

2. 学校合唱一队的人数是合唱二队人数的 $\frac{4}{5}$ 少 10 人,如果从合唱二队调 20 人到合唱一队,那么两队人数恰好相等,求两队原有的人数.

3. 某乡去年春播作物的面积比秋播作物的面积多 630 公顷,计划今年春播作物的面积增加 20%,秋播作物的面积减少 10%,这样今年春、秋作物的总面积将比去年增加 12%. 这个乡 去年春播作物与秋播作物的面积各是多少?